Recap

- Reliability block diagrams
- Conditional probability.
- Law of total probability
- Bayes theorem
- Conditioning examples
- Gambler’s ruin problem
Gambler’s Ruin

Example

• The gambler’s ruin problem is another famous problem in probability.
• It is related to sequential stopping rules in clinical trials.
• Players A and B have a total fortune of M dollars between them.
• Player A starts with n dollars and B with $M - n$.
• Each turn a coin is toss independently:
 • The probability of heads is p.
 • If a head occurs then B pays one dollar to A.
 • If a tail occurs then A pays one dollar to B.
• The game ends when one player has all M dollars.
• What is the probability that A ends up with all the fortune, or B is ruined?
• Some simulations:

 http://www.stat.uiowa.edu/~luke/classes/193/ruin.R.
Example (gambler’s ruin. continued)

- Let p_n be the probability that B is ruined when A starts with n dollars.
- Then

 \[
 p_0 = 0 \\
 p_M = 1.
 \]

- For $0 < n < M$

 \[
 p_n = P(B \text{ is ruined} | \text{first toss is } H)p + P(B \text{ is ruined} | \text{first toss is } T)(1 - p)
 \]

- Now

 \[
 P(B \text{ is ruined} | \text{first toss is } H) = p_{n+1} \\
 P(B \text{ is ruined} | \text{first toss is } T) = p_{n-1}
 \]

- So p_n satisfies the second order difference equation

 \[
 p_n = p_{n+1}p + p_{n-1}(1 - p).
 \]
Example (gambler’s ruin. continued)

• Subtracting \(p_n p \) from both sides and rearranging yields

\[
p_{n+1} - p_n = \frac{1-p}{p} (p_n - p_{n-1}).
\]

• Since \(p_0 = 0 \) this implies that

\[
p_{n+1} - p_n = \left(\frac{1-p}{p}\right)^n p_1
\]

• Therefore for \(0 < n \leq M \)

\[
p_n = p_1 \sum_{k=1}^{n} \left(\frac{1-p}{p}\right)^{k-1}
\]
Example (gambler’s ruin. continued)

• The sum is

\[
\sum_{k=1}^{n} \left(\frac{1-p}{p} \right)^{k-1} = \begin{cases}
1 - \left(\frac{1-p}{p} \right)^{n} & \text{if } p \neq \frac{1}{2} \\
\frac{1}{1 - \left(\frac{1-p}{p} \right)^{M}} & \text{if } p = \frac{1}{2}.
\end{cases}
\]

• Using the fact that \(p_{M} = 1 \) this gives

\[
p_{n} = \begin{cases}
\frac{1 - \left(\frac{1-p}{p} \right)^{n}}{1 - \left(\frac{1-p}{p} \right)^{M}} & \text{if } p \neq \frac{1}{2} \\
n/M & \text{if } p = \frac{1}{2}.
\end{cases}
\]

• This holds for \(0 \leq n \leq M \).
Continuous Sample Spaces

• Some experiments require sample spaces that are continuous ranges:
 • Measuring the melting point of a substance.
 • Measuring the angle at which a particle leaves a point source.
 • Recording the time it takes to service a customer at a bank.

• Some experiments may require several continuous ranges:
 • Recording height and weight of a randomly selected person.
 • Recording the service times for each of the first 10 customers.

• There can be a continuous range of continuous ranges:
 • Recording the trajectory of a migrating bird.

• Continuous ranges are uncountable and require some different approaches.
Example

- We would like to model the direction in which a particle leaves a point source.
- This has a number of applications:
 - Photon emission in optics.
 - Gamma particles in nuclear medicine and medical imaging.
- We would like to capture the idea that the particle is equally likely to leave in any direction.
- The angle will be in the range \([0, 2\pi)\).
- Equally likely to leave in any direction would mean
 - The probability of the angle falling in the ranges \([0, \pi) \) and \([\pi, 2\pi)\) should be \(\frac{1}{2}\) each.
 - The probability of the angle falling in the range \([\pi, 3\pi/2)\) should be \(\frac{1}{4}\).
 - The probability of the angle falling in an interval \([a, b)\) should be proportional to the length \(b - a\).
 - This means the probability would be \(\frac{b{-a}}{2\pi}\).
Example (continued)

- What is the probability the particle leaves in a particular direction a; what is $P(\{a\})$?
 - Let $A_n = [a, a + 1/n]$.
 - Then $A_1 \supset A_1 \supset \ldots$ and $\bigcap_{n=1}^{\infty} A_n = \{a\}$.
 - So by the continuity property of probability

 $$P(\{a\}) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \frac{1}{2\pi n} = 0.$$

- A consequence is that

 $$P([a, b)) = P((a, b)) = P((a, b]) = P([a, b])$$

- We can compute the probability density near a direction a as

 $$f(a) = \lim_{h \downarrow 0} \frac{P([a, a+h))}{h} = \lim_{h \downarrow 0} \frac{P([a-h, a])}{h} = \lim_{h \downarrow 0} \frac{1}{h} \frac{1}{2\pi} = \frac{1}{2\pi}.$$
• Does a probability with the properties of the previous example exist?

• Equivalent question: is it possible to compute a meaningful size, or length, for any subset of the real line?

• Unfortunately: no.

• There exist some very strange subsets of the real line.

• Reasonable subsets, even many very complicated ones, do allow their size to be computed.

• To move forward we need to be able to restrict our probabilities to a collection \mathcal{B} of reasonable subsets.

• For our axioms to make sense we need our collection of reasonable subsets \mathcal{B} to satisfy some closure conditions:

 1. $\emptyset \in \mathcal{B}$.
 2. If $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$.
 3. If $A_1, A_2, \cdots \in \mathcal{B}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$.

• A collection \mathcal{B} of subsets of a sample space S that satisfies these conditions is called a sigma-algebra of subsets.
Examples

• The smallest sigma-algebra on a sample space S is
 \[\mathcal{B} = \{ \emptyset, S \} \]

• The largest sigma-algebra on a sample space S is
 \[\mathcal{B} = \{ \text{all subsets of } S \} = 2^S \]

• If S is countable and $\{s\} \in \mathcal{B}$ for all $s \in S$, then
 \[\mathcal{B} = \{ \text{all subsets of } S \} \]

• If S is not countable, then we often need to use a \mathcal{B} that does not contain all subsets of S.

• Even for countable state spaces it is sometimes useful to use a \mathcal{B} that does not contain all subsets of S.
Example

Let $S = \mathbb{R} = (-\infty, \infty)$ and let \mathcal{B} be the smallest sigma-algebra containing all open intervals (a, b), $a, b \in \mathbb{R}$.

- This is well-defined.
- \mathcal{B} is called the Borel sigma-algebra on S.
- The sets in \mathcal{B} are called Borel sets.
- Non-Borel sets do exist but are quite strange.
- \mathcal{B} is also the smallest sigma-algebra containing all intervals of the form $(-\infty, a]$ for all $a \in \mathbb{R}$.
- Other characterizations are possible.
- Analogous definitions apply when S is an interval.
- Analogous definitions apply when S is \mathbb{R}^2 or \mathbb{R}^n.
A Final Definition of Probability

Definition

A probability, or probability function, is a real-valued function defined on a sigma-algebra \mathcal{B} of subsets of a sample space S such that

(i) $P(A) \geq 0$ for all $A \in \mathcal{B}$

(ii) $P(S) = 1$

(iii) If $A_1, A_2, \ldots \in \mathcal{B}$ are pairwise disjoint, then

$$P \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i).$$

• This is the definition introduced by Kolmogorov in 1933 that is now the standard.
• A triple (S, \mathcal{B}, P) is called a probability space.
• If S is a subset of the real line then a probability is sometimes called a probability distribution.
With this definition we can use the probability we developed to model the angle of a particle leaving a point source:

Theorem

For any bounded interval \([L, U]\) with \(L < U\) there exists a unique probability defined on the Borel subsets of the interval such that

\[
P((a, b)) = \frac{b - a}{U - L}
\]

for \(L \leq a < b \leq U\). This is called the **uniform distribution** on \([L, U]\).
Random Variables

• Random variables are numerical quantities with values we are uncertain about.

• In our framework we can think of each outcome in our sample space as producing a particular value for the random variable.

• We can think of a random variable as a real-valued function defined on our sample space.

• Sometimes we are interested in only one random variable, sometimes in many.
Examples

- Outcomes are all possible subsets of 3 out of 100 items.
 - We are mainly interested in the number of defectives in the sample.

- Outcomes are all possible past and future prices of a stock.
 - We are mainly interested in the stock today and one month from now.

- A student is selected at random. Outcomes are all possible students.
 - We are interested in the height and weight of the student selected.
Recap

- Conditioning examples
 - reliability block diagram
 - matching problem
 - gambler’s ruin problem
- Continuous sample spaces
 - sigma algebras
 - Borel sets
- A final definition of probability
- Random variables
A random variable represents a numerical measurement that can be computed for each outcome.

Informally: A random variable is a real-valued function defined on a sample space.

Random variables are usually denoted by upper case letters from the end of the alphabet:

\[X(s) : S \rightarrow \mathbb{R} \]

Lower case letters usually denote generic realized values: \(x = X(s) \).

- Two dice are rolled; the sample space is \(S = \{(1, 1), (1, 2), \ldots, (6, 6)\} \).
- \(X \) is the sum of the values on the two dice.
- The experiment is performed and results in the outcome \(s = (3, 2) \).
- The realized value of \(X \) is \(x = X(s) = X((3, 2)) = 5 \).

Often the argument is dropped:

\[P(\{s \in S : X(s) \leq 5\}) = P(\{X \leq 5\}) = P(X \leq 5) \]
Random Variables

- When our probability is defined on all subsets of the sample space then any real-valued function on the sample space is a random variable.
- If our probability is defined only for some subsets of the sample space, the subsets in a sigma-algebra \mathcal{B}, then to be able to compute $P(X \leq 5) = P(\{s \in S : X(s) \leq 5\})$ we need to have $\{s \in S : X(s) \leq 5\} \in \mathcal{B}$.
- This property is called measurability with respect to \mathcal{B}.
- A random variable is a \mathcal{B}-measurable real-valued function on the sample space S.
Definition

Let S be a sample space and \mathcal{B} a sigma-algebra of events on S. A real-valued function $X = X(s) : S \to \mathbb{R}$ is a random variable if

$$\{ s : X(s) \leq t \} \in \mathcal{B}$$

for all $t \in \mathbb{R}$. An equivalent condition is that

$$X^{-1}(A) = \{ s : X(s) \in A \} \in \mathcal{B}$$

for any Borel set A.
Examples

• Toss a coin n times, $X =$ number of heads.
• Roll two dice,
 $X =$ sum,
 $Y =$ difference.
• Sample 1000,
 $X =$ number who favor some issue,
 $Y =$ number who oppose the issue,
 $Z = 1000 − X − Y$.
Example

- A coin is tossed twice; the sample space is $S = \{HH, HT, TH, TT\}$.
- Let X_i be the number of heads on toss i and let $Y = X_1 + X_2$ be the total number of heads.
- Let \mathcal{B} be all subsets of S.
- and let

 $\mathcal{B}_1 = \{\emptyset, S, \{HH, HT\}, \{TH, TT\}\}$.

- Both \mathcal{B} and \mathcal{B}_1 are sigma-algebras.
- X_1, X_2, and Y are all measurable with respect to \mathcal{B}.
- X_1 is measurable with respect to \mathcal{B}_1.
- X_2 and Y are not measurable with respect to \mathcal{B}_1:

 \[
 \{X_2 \leq 0\} = \{HT, TT\} \notin \mathcal{B}_1 \\
 \{Y \leq 0\} = \{TT\} \notin \mathcal{B}_1
 \]
Example (continued)

- \mathcal{B}_1 is called the sigma-algebra generated by X_1.
- \mathcal{B}_1 is the smallest sigma-algebra with respect to which X_1 is measurable.
- \mathcal{B}_1 consists of those subsets of S for which one can determine whether the outcome that has occurred is in the subset or not by knowing only the value of X_1.
- Conversely, if we know for each event $A \in \mathcal{B}_1$ whether A has occurred or not, then we know the value of X_1.
Distributions

• Let X be a random variable on a probability space (S, \mathcal{B}, P).
• For any Borel set A, let

$$P_X(A) = P(\{X \in A\}) = P(\{s \in S : X(s) \in A\}).$$

• P_X is a probability on \mathbb{R}, the Borel sigma-algebra on \mathbb{R}.
• A random variable induces the probability P_X on the real line \mathbb{R}.
• This induced probability is called the distribution of X.
• The triple $(\mathbb{R}, \mathcal{B}, P_X)$ is the probability space induced by X on the real line.
• Similarly, a pair of random variables X and Y induces a probability on \mathbb{R}^2.
• This is called the joint probability distribution of X and Y.
Recap

- Random variables
- Measurability
- Distributions, induced probabilities
- Cumulative Distribution Function (CDF)
Cumulative Distribution Functions

- Writing down probabilities for all Borel sets would be a daunting task.
- We need some simpler tools for specifying distributions.
- One tool that is available for any random variable is the cumulative distribution function:

Definition

The cumulative distribution function (CDF) of a random variable X is

$$F_X(x) = P(X \leq x)$$

for all $x \in \mathbb{R}$.

- A few authors define the CDF as $F_X(x) = P(X < x)$.
- The *survival function* $S_X(x) = P(X > x)$ is sometimes used for lifetime distributions.
- The survival function satisfies $S_X(x) = 1 - F_X(x)$.
Example

For $X =$ number of heads in two coin flips:

$$F_X(x) = \begin{cases}
0 & x < 0 \\
\frac{1}{4} & 0 \leq x < 1 \\
\frac{3}{4} & 1 \leq x < 2 \\
1 & x \geq 2
\end{cases}$$

The plot was created with

```r
s <- stepfun(c(0, 1, 2), c(0, .25, .75, 1))
plot(s, verticals = FALSE, pch = 19, main="", ylab=expression(F[X](x)))
```
Example

• Let X be the angle in which a particle leaves a point source.
• Suppose X has a uniform distribution on $[0, 2\pi)$.
• This means for $0 \leq a \leq b \leq 2\pi$

$$P(a < X < b) = \frac{b - a}{2\pi}.$$

• Therefore

$$F_X(x) = \begin{cases}
0 & x < 0 \\
\frac{x}{2\pi} & 0 \leq x < 2\pi \\
1 & x \geq 2\pi.
\end{cases}$$
Some properties of the CDF:

(a) \(\lim_{x \to -\infty} F(x) = 0 \)

(b) \(\lim_{x \to \infty} F(x) = 1 \)

(c) \(F \) is nondecreasing

(d) \(F \) is right-continuous

Properties (a), (b), and (d) follow from the continuity of probability.

If a function \(F \) has these four properties, then it is the CDF of some random variable.

If \(F \) has a jump at \(x \), then \(P(X = x) \) is the size of the jump.
Computing Some Probabilities

\[P(a < X \leq b) = F(b) - F(a) \] for any \(a < b \).

Proof.

The event \(\{X \leq b\} \) can be written as the disjoint union

\[\{X \leq b\} = \{X \leq a\} \cup \{a < X \leq b\} \]

By finite additivity,

\[
F(b) = P(X \leq b) = P(X \leq a) + P(a < X \leq b) = F(a) + P(a < X \leq b)
\]
Computing Some Probabilities

\[P(X < a) = F(a-) = \lim_{x \uparrow a} F(x) \] for any \(a \in \mathbb{R} \).

Proof.

Let \(A_n = \{a - \frac{1}{n} < X < a\} \). Then for each \(n \geq 1 \)

\[P(X < a) = F \left(a - \frac{1}{n} \right) + P(A_n) \]

Furthermore,

\[\bigcap_{n=1}^{\infty} A_n = \emptyset. \]

So by the continuity property \(\lim_{n \to \infty} P(A_n) = 0 \), and

\[P(X < a) = F(a-) + \lim_{n \to \infty} P(A_n) = F(a-). \]
Computing Some Probabilities

\[P(X = a) = F(a) - F(a-) = \text{size of the jump of } F \text{ at } a. \]

\textbf{Proof.}

The event \{X = a\} can be written as

\[\{X = a\} = \{X \leq a\} \setminus \{X < a\}. \]

So

\[P(X = a) = P(X \leq a) - P(X < a) = F(a) - F(a-) \]

\[P(a \leq X \leq b) = F(b) - F(a-). \]

\textbf{Proof.}

Follows similarly from observing that

\[\{a \leq X \leq b\} = \{X \leq b\} \setminus \{X < a\}. \]
Joint CDF of Two Random Variables

- The joint CDF of two random variables X and Y is defined as

$$F_{XY}(x, y) = P(\{X \leq x\} \cap \{Y \leq y\}).$$

- The probability of any rectangle with sides parallel to the axes can be calculated from the joint CDF.
- Other probabilities are harder to obtain from the joint CDF.
Comparing Distributions

Definition
Two random variables X and Y are *identically distributed* if their distributions P_X and P_Y are identical, i.e. if

$$P_X(A) = P(X \in A) = P(Y \in A) = P_Y(A)$$

for all Borel sets A.

Theorem
Two random variables X and Y are identically distributed if and only if their CDF’s are identical.
Classifying Distributions

- A random variable is \textit{discrete} if the set of its possible values is finite or countable.
- Equivalently, a random variable is discrete if its CDF is a step function.
- A random variable is \textit{continuous} if its CDF is continuous and there is a nonnegative function f such that
 \[F(x) = \int_{-\infty}^{x} f(u) \, du \]
 for all $x \in \mathbb{R}$.
 - F will be differentiable “almost everywhere” with $F' = f$.
 - f is called a \textit{probability density function}.
- Continuous distributions are sometimes called \textit{absolutely continuous}.
• Combinations of discrete and continuous features are possible.
 • The CDF of the waiting time at a bank might look like this:
 • The CDF of the amount of rainfall on a day would also look like this.
 • There also exist weird random variables that have a CDF that is continuous but nowhere differentiable.
Characterizing Discrete and Continuous Distributions

• The CDF can be used to characterize any probability distribution on the real line.
• Simpler characterizations are available if the RV’s are discrete or continuous.
• For discrete random variables we can use the probability mass function (PMF):

Definition
The probability mass function (PMF) of a discrete random variable is given by

\[f_X(x) = P(X = x) \]

for all \(x \in \mathbb{R} \).
• If \(\mathcal{X} \) is the discrete set of possible values of \(X \), then \(f_X(x) = 0 \) for all \(x \notin \mathcal{X} \).
• Using the PMF we can compute any probabilities we want:

\[
P(a \leq X \leq b) = \sum_{a \leq x \leq b} f_X(x)
\]

\[
P(X \in A) = \sum_{x \in A} f_X(x)
\]

• In particular,

\[
F_X(x) = \sum_{y \leq x} f_X(y)
\]

• So the PMF completely determines the distribution of a RV.
• The PMF is defined for continuous random variables but isn’t useful.
• Instead, we use the *probability density function* (PDF):

\textbf{Definition}

If X is a random variable and $f_X(x)$ is a nonnegative real-valued function on \mathbb{R} such that

$$F_X(x) = P(X \leq x) = \int_{-\infty}^{x} f_X(u) du$$

for all $x \in \mathbb{R}$ then X is continuous and $f_X(x)$ is a probability density function (PDF) for X (or for F_X).
Notes

• If \(f_X(x) \) is continuous at \(x \), then \(f_X(x) = F'_X(x) \), i.e.

\[
 f_X(x) = \lim_{\varepsilon \downarrow 0} \frac{F_X(x + \varepsilon) - F_X(x)}{\varepsilon} \\
= \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} P(x \leq X \leq x + \varepsilon)
\]

• So \(f_X(x) \) is the “density of probability” at \(x \).
• \(f_X(x) > 1 \) is possible.
• \(P(X = x) = 0 \) for all \(x \) if \(X \) is continuous.
• For any Borel subset \(A \) of \(\mathbb{R} \),

\[
 P(X \in A) = \int_A f_X(x) \, dx
\]
Theorem

A function $f_X(x)$ is a PMF (or PDF) of some random variable if and only if

(i) $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.

(ii) $\sum_x f_X(x) = 1$ \hspace{1cm} (PMF)

$\int_{-\infty}^{\infty} f_X(x) dx = 1$ \hspace{1cm} (PDF)
Example

• A random variable with density

\[f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \end{cases} \]

for some \(\lambda > 0 \) is called an exponential random variable.

• This is a useful simple model for life times.

• We have \(f_X(x) \geq 0 \) for all \(x \) and

\[
\int_{-\infty}^{\infty} f_X(x) \, dx = 0 + \int_{0}^{\infty} \lambda e^{-\lambda x} \, dx = 0 + 1 = 1
\]

So \(f_X \) is a density for any \(\lambda > 0 \).

• The CDF is

\[
F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 - e^{-\lambda x} & \text{for } x > 0 \end{cases}
\]