Recap

- Location-scale families
- Exponential family notes
- Multiple random variables
Example

- Six points in the plane, all equally likely to be chosen:

 - Points \((x, y)\) with \(0 \leq x, 0 \leq y, x + y \leq 2\), and \(x, y\) integers.
 - The joint PMF is

 \[
 f(x, y) = \begin{cases}
 \frac{1}{6} & \text{if } x, y \text{ are integers, } x, y \geq 0, x + y \leq 2 \\
 0 & \text{otherwise}
 \end{cases}
 \]
Example (continued)

• We can find

\[P(X + Y = 2) = f(2, 0) + f(1, 1) + f(0, 2) = \frac{1}{2} \]

• \(X \) and \(Y \) are random variables, so they have PMF’s:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_X(x))</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
</tr>
</tbody>
</table>

• \(f_Y(y) \) is the same by symmetry.
Example (continued)

- Sometimes we use a table to represent joint PMF’s:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>1</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- The PMFs of X and Y appear in the margins.
- They are called *marginal PMFs*.
• In general, we can compute the marginal PMF of, say, X as

$$f_X(x) = \sum_y f(x, y)$$

• For n variables,

$$f_{X_1}(x_1) = \sum_{x_2, \ldots, x_n} f(x_1, \ldots, x_n)$$

• For $n \geq 3$ we can also compute a joint marginal PMF of two or more variables:

$$f_{X,Z}(x, z) = \sum_y f(x, y, z)$$
• We can compute the expected value of a random variable from its marginal distribution.

• For our example,

\[
E[X] = 0 \times \frac{1}{2} + 1 \times \frac{1}{3} + 2 \times \frac{1}{6} = \frac{2}{3}
\]

• In general, the expectation of a function \(g \) of several discrete random variables can be computed as

\[
E[g(X_1, \ldots, X_n)] = \sum_{x_1, \ldots, x_n} g(x_1, \ldots, x_n) f(x_1, \ldots, x_n)
\]

• You get the same answer using this approach:

\[
E[X] = 0 \times \frac{1}{6} + 0 \times \frac{1}{6} + 0 \times \frac{1}{6} + 1 \times \frac{1}{6} + 1 \times \frac{1}{6} + 2 \times \frac{1}{6} = \frac{2}{3}
\]
This is always true:

\[
E[g(X)] = \sum_x \sum_y g(x) f(x, y)
\]

\[
= \sum_x g(x) \left(\sum_y f(x, y) \right)
\]

\[
= \sum_x g(x) f_X(x)
\]

We can also now verify that \(E[X + Y] = E[X] + E[Y] \):

\[
E[X + Y] = \sum_x \sum_y (x + y) f(x, y)
\]

\[
= \sum_x \sum_y (xf(x, y) + yf(x, y))
\]

\[
= \sum_x \sum_y xf(x, y) + \sum_x \sum_y yf(x, y)
\]

\[
= E[X] + E[Y]
\]
Jointly Continuous Random Variables

Random variables X_1, \ldots, X_n are jointly continuous if there is a non-negative function f such that

$$P((X_1, \ldots, X_n) \in A) = \int_A \cdots \int f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n$$

for “all” $A \subset \mathbb{R}^n$.

- f is a joint PDF of X_1, \ldots, X_n
- Any non-negative function $f(x_1, \ldots, x_n)$ with
 $$\int \cdots \int f(x_1, \ldots, x_n) \, dx_n \cdots dx_1 = 1$$
 is a joint PDF.
- It is possible for X, Y to be marginally continuous but not jointly continuous.
Example

- Let \(A = \{(x, y) : x \geq 0, y \geq 0, x + y \leq 1\} \)

- The area of \(A \) is \(|A| = \frac{1}{2}\).

- Let

\[
 f(x, y) = \begin{cases}
 2 & (x, y) \in A \\
 0 & \text{otherwise}
 \end{cases}
\]

- This is a uniform distribution on \(A \).
Example (continued)

- In general, if $A \subset \mathbb{R}^n$ is a set with finite, positive area $|A|$, then

$$f(x) = \frac{1}{|A|} 1_A(x)$$

is a PDF of the uniform distribution on A.

- We can compute

$$P(X + Y \leq 1/2) = \int \int_{x+y \leq 1/2} f(x, y) \, dx \, dy$$

$$= \int_0^{1/2} \int_0^{1/2-y} 2 \, dx \, dy$$

$$= \int_0^{1/2} \left(\int_0^{1/2-y} 2 \, dx \right) \, dy$$

$$= \int_0^{1/2} \left(1 - 2y \right) \, dy$$

$$= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
Example (continued)

- In general, if X is uniform on A, then
 \[P(X \in B) = \frac{|A \cap B|}{|A|} \]

- We can compute the marginal CDF of X: For $0 \leq a \leq 1$
 \[
 F_X(a) = P(X \leq a) = \int_{-\infty}^{a} \int_{-\infty}^{\infty} f(x, y) dy dx \\
 = \int_{0}^{a} \int_{0}^{1-x} 2 dy dx \\
 = \int_{0}^{a} 2 - 2x dx = 2a - a^2
 \]

- The marginal density of X is
 \[
 f_X(x) = (2 - 2x)1_{[0,1]}(x) = 2(1 - x)1_{[0,1]}(x)
 \]
• In general,

\[
F_X(a) = \int_{-\infty}^{a} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx
\]

\[
f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy
\]

• We can compute expectations as integrals:

\[
E[g(X_1, \ldots, X_n)] = \int \cdots \int g(x_1, \ldots, x_n) f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n
\]
• For our example,

\[E[X + Y] = \int_0^1 \int_0^{1-x} (x + y)^2 \, dy \, dx \]

\[= \int_0^1 (2xy + y^2)|_{0}^{1-x} \, dx \]

\[= \int_0^1 2x(1 - x) + (1 - x)^2 \, dx \]

\[= \int_0^1 (1 + x)(1 - x) \, dx \]

\[= \int_0^1 (1 - x^2) \, dx = 1 - \frac{1}{3} = \frac{2}{3} \]
• Or we can find

\[
E[X] = \int_0^1 x^2 (1 - x) \, dx = x^2 - \frac{2}{3} x^3 \bigg|_0^1 = 1 - \frac{2}{3} = \frac{1}{3}
\]

\[
E[Y] = \frac{1}{3} \quad \text{by symmetry}
\]

and

\[
E[X + Y] = E[X] + E[Y] = \frac{2}{3}
\]

• A joint density function satisfies

\[
f(x_1, \ldots, x_n) \geq 0
\]

\[
\int \cdots \int f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n = 1
\]

• Any function \(f \) with these properties is a joint density.
It is possible for marginal distributions to be continuous but the joint distribution is not.

For example, suppose X and Y are jointly continuous and $Z = X + Y$.

- All three of X, Y, and Z are continuous.
- Each of the pairs (X, Y), (X, Z), and (Y, Z) is jointly continuous.
- But (X, Y, Z) is not jointly continuous.
- The distribution of (X, Y, Z) is concentrated on a two-dimensional plane.

It is also possible to have mixtures of

- discrete components
- components continuous on a lower dimensional subspace
- jointly continuous components

For example, let X be the amount of rainfall today, Y the amount of rainfall tomorrow.
We say that \(n \) random variables \(X_1, \ldots, X_n \) are (mutually) independent if for "any" \(A_1, \ldots, A_n \)

\[
P(X_1 \in A_1, \ldots, X_n \in A_n) = P(X \in A_1) \times \cdots \times P(X_n \in A_n)
\]

Theorem

If \(X_1, \ldots, X_n \) are discrete (or jointly continuous) then they are independent if and only if

\[
f(x_1, \ldots, x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)
\]

for all \(x_1, \ldots, x_n \).
Proof.

For $n = 2$ and the discrete case:

- Independence implies factorization:

 $$f(x, y) = P(X = x, Y = y) = P(X = x)P(Y = y) = f_X(x)f_Y(y)$$

- Factorization implies independence:

 $$P(X \in A, Y \in B) = \sum_{x \in A} \sum_{y \in B} f(x, y)$$
 $$= \sum_{x \in A} \sum_{y \in B} f_X(x)f_Y(y)$$
 $$= \left(\sum_{x \in A} f_X(x)\right)\left(\sum_{y \in B} f_Y(y)\right)$$
 $$= P(X \in A)P(Y \in B)$$
Example (continued)

- For our running continuous example,

\[f_X(x)f_Y(y) = 4(1 - x)(1 - y)1_{[0,1]}(x)1_{[0,1]}(y) \]

- However,

\[f(x, y) = 2 \times 1_{\{(x, y): x \geq 0, y \geq 0, x+y \leq 1\}}(x, y) \]

- So \(X \) and \(Y \) are not independent.

- If \(X, Y \) is uniform on \([0, 1] \times [0, 1]\) then \(X \) and \(Y \) are independent.
Theorem

If X, Y are independent and g, h are nonnegative or satisfy $E[|g(X)|] < \infty$ and $E[|h(Y)|] < \infty$, then

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)].$$
Proof.

For the discrete case:

\[
E[g(X)h(Y)] = \sum_x \sum_y g(x)h(y)f(x, y)
\]

\[
= \sum_x \sum_y g(x)f_X(x)h(y)f_Y(y)
\]

\[
= \left(\sum_x g(x)f_X(x) \right) \left(\sum_y h(y)f_Y(y) \right)
\]

\[
= E[g(X)]E[h(Y)]
\]
• This holds for any number of independent random variables with the obvious generalization.

• Suppose X, Y are independent and $E[X^2], E[Y^2]$ are finite.

• Then

\[
\text{Var}(X + Y) = E[((X + Y) - E[X] - E[Y])^2] \\
= E[((X - E[X]) + (Y - E[Y]))^2] \\
= E[(X - E[X])^2] + E[(Y - E[Y])^2] \\
\quad + 2E[(X - E[X])(Y - E[Y])] \\
= \text{Var}(X) + \text{Var}(Y) + 0 \\
= \text{Var}(X) + \text{Var}(Y)
\]

• This extends to any number of variables.
Example

- Let Y_1, \ldots, Y_n be independent Bernoulli(p) random variables.
- Then $X = Y_1 + \cdots + Y_n$ is Binomial(n, p).
- The variance of X is therefore

\[
\text{Var}(X) = \text{Var}(Y_1 + \cdots + Y_n) \\
= \text{Var}(Y_1) + \cdots + \text{Var}(Y_n) \\
= np(1 - p)
\]
Another important consequence of independence:

Theorem

Let X, Y be independent with MGF’s M_X, M_Y. Then

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

Proof.

$$M_{X+Y}(t) = E[\exp\{t(X + Y)\}]$$

$$= E[\exp\{tX\}\exp\{tY\}]$$

$$= E[e^{tX}]E[e^{tY}]$$

$$= M_X(t)M_Y(t)$$
Example

• If Y_1, \ldots, Y_n are independent Bernoulli(p), then

$$M_{Y_i}(t) = pe^t + 1 - p.$$

• So if $X = Y_1 + \cdots + Y_n$ is binomial, then

$$M_X(t) = M_{Y_1}(t) \times \cdots \times M_{Y_n}(t) = (pe^t + 1 - p)^n$$
Example

- If Y_1, \ldots, Y_r are independent Geometric(p), then

\[
M_{Y_i} = \begin{cases}
 \frac{pe^t}{1-(1-p)e^t} & t < -\log(1-p) \\
 \infty & \text{otherwise}
\end{cases}
\]

- So if $X = Y_1 + \cdots + Y_r$, then

\[
M_X(t) = M_{Y_1}(t) \times \cdots \times M_{Y_r}(t) = \begin{cases}
 \left(\frac{pe^t}{1-(1-p)e^t}\right)^r & t < -\log(1-p) \\
 \infty & \text{otherwise}
\end{cases}
\]

- So X has a negative binomial distribution.
Recap

- Jointly discrete random variables
- Jointly continuous random variables
- Independent random variables
- Independence and expectation
- Variance of sums of independent random variables
- MGF of a sum of independent random variables
Example

- Perhaps the most important example: Suppose X and Y are independent and

 $$X \sim N(\mu_X, \sigma_X^2)$$
 $$Y \sim N(\mu_Y, \sigma_Y^2)$$

- Then

 $$M_{X+Y}(t) = \exp\left\{ t\mu_X + \frac{1}{2} t^2 \sigma_X^2 \right\} \exp\left\{ t\mu_Y + \frac{1}{2} t^2 \sigma_Y^2 \right\}$$

 $$= \exp\left\{ t(\mu_X + \mu_Y) + \frac{1}{2} t^2 (\sigma_X^2 + \sigma_Y^2) \right\}$$

- So $X \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.
Covariance and Correlation

• Suppose X, Y are not independent.
• Can we somehow quantify “degrees of dependence”?
• The covariance captures some of this:

$$\text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

• The covariance can also be computed as:

$$\text{Cov}(X, Y) = E[XY - X\mu_Y - Y\mu_X + \mu_X \mu_Y]$$

$$= E[XY] - E[X]\mu_Y - E[Y]\mu_X + \mu_X \mu_Y$$

$$= E[XY] - \mu_X \mu_Y$$

• If X, Y are independent (and $E[X^2], E[Y^2]$ are finite), then $\text{Cov}(X, Y) = 0$.
• However, \(X \sim N(0, 1), Y = X^2 \) gives

\[
E[XY] = E[X^3] = 0
\]

• Therefore

\[
\text{Cov}(X, Y) = 0
\]

• But \(X, Y \) are very strongly dependent.

• Covariance captures only \textit{linear} dependence, not quadratic or other dependence.

• The sign of the covariance is meaningful:
 \(+\): \(X, Y \) tend to be on the same side of their means
 \(-\): \(X, Y \) tend to be on opposite sides of their means

• The magnitude is not meaningful—it depends on the units of measurement.
• To get a dimensionless quantity, let

\[\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \]

• \(\rho_{X,Y} \) is the correlation coefficient of \(X, Y \).

• We define \(\rho_{X,Y} = 0 \) if \(\sigma_X = 0 \) or \(\sigma_Y = 0 \).

Theorem

If \(X, Y \) have \(E[X^2], E[Y^2] \) finite, then \(\rho_{X,Y} \) is defined, and

\[-1 \leq \rho_{X,Y} \leq 1\]

Furthermore, if \(\rho_{X,Y} = \pm 1 \), then for some constants \(a, b, c \) with \(a \neq 0 \) and \(b \neq 0 \), \(aX + bY + c \) is identically zero.
Proof.

- Let
 \[h(t) = E[((X - \mu_X)t + (Y - \mu_Y))^2]. \]
- Then \(h(t) \geq 0 \) for all \(t \).
- But
 \[h(t) = t^2\sigma_X^2 + 2t\text{Cov}(X, Y) + \sigma_Y^2. \]
- So
 \[(2\text{Cov}(X, Y))^2 - 4\sigma_X^2\sigma_Y^2 \leq 0 \]
 or
 \[|\text{Cov}(X, Y)| \leq \sigma_X\sigma_Y. \]
- Equality holds if and only if for some \(t^* \) we have \(h(t^*) = 0 \), or
 \[0 = E[((X - \mu_X)t^* + (Y - \mu_Y))^2] \]
- This implies that \((X - \mu_X)t^* + (Y - \mu_Y) = 0\) almost surely.
Example

• For our simple uniform on a triangle example,

\[
E[XY] = \int_0^1 \int_0^{1-x} xy \, 2dydx
\]

\[
= \int_0^1 x(1-x)^2 \, dx
\]

\[
= \int_0^1 x - 2x^2 + x^3 \, dx
\]

\[
= \frac{1}{2} - \frac{2}{3} + \frac{1}{4} = \frac{3}{4} - \frac{2}{3} = \frac{1}{12}
\]

• The means are \(E[X] = E[Y] = \frac{1}{3}\).

• Therefore

\[
\text{Cov}(X, Y) = \frac{1}{12} - \frac{1}{9} = -\frac{1}{36}
\]
Example (continued)

- The variances are

\[
\text{Var}(X) = \text{Var}(Y) = \int_0^1 x^2 2(1 - x) \, dx - \frac{1}{9}
\]

\[
= \int_0^1 2x^2 - 2x^3 \, dx - \frac{1}{9}
\]

\[
= \frac{2}{3} - \frac{2}{4} - \frac{1}{9} = \frac{24 - 18 - 4}{36} = \frac{2}{36}
\]

- The correlation is therefore

\[
\rho_{X,Y} = -\frac{1}{2}
\]

- Negative correlation makes sense:
Some Properties of Covariance

For random variables X, Y, Z with finite variances and a constant c

\[
\begin{align*}
\text{Var}(X) &= \text{Cov}(X, X) \\
\text{Cov}(X, Y) &= \text{Cov}(Y, X) \\
\text{Cov}(X + c, Y) &= \text{Cov}(X, Y) \\
\text{Cov}(cX, Y) &= c\text{Cov}(X, Y) \\
\text{Cov}(X + Y, Z) &= \text{Cov}(X, Z) + \text{Cov}(Y, Z)
\end{align*}
\]
Theorem

Let X_1, \ldots, X_n have $E[X_i^2] < \infty$. Then

$$\text{Var}(X_1 + \cdots + X_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, X_j)$$

$$= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i<j} \text{Cov}(X_i, X_j)$$
Proof.

\[
\text{Var} \left(\sum X_i \right) = \text{Cov} \left(\sum_{i} X_i, \sum_{j} X_j \right) \\
= \sum_{i} \text{Cov} \left(X_i, \sum_{j} X_j \right) \\
= \sum_{i} \sum_{j} \text{Cov}(X_i, X_j) \\
= \sum_{i=1}^{n} \text{Var}(X_i) + \sum_{i \neq j} \text{Cov}(X_i, X_j) \\
= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i < j} \text{Cov}(X_i, X_j)
\]
Example

- Have N items, M defectives.
- Choose K at random, without replacement.
- X is the number of defectives in the sample.
- X has a hypergeometric distribution.
- Let $Y_i = 1$ if i-th item chosen is defective, 0 otherwise.
- Then $X = Y_1 + \cdots + Y_K$.
- The Y_i are Bernoulli($p = \frac{M}{N}$), so

$$E[Y_i] = \frac{M}{N}$$

$$Var(Y_i) = \frac{M}{N} \left(1 - \frac{M}{N} \right)$$
Example (continued)

- To compute $\text{Var}(X)$ we need $\text{Cov}(Y_i, Y_j)$ for $i \neq j$:

 \[
 E[Y_i Y_j] = E[Y_1 Y_2] = P(1\text{st and 2nd defective}) = \frac{M (M - 1)}{N (N - 1)}
 \]

- So

 \[
 \text{Cov}(Y_1, Y_2) = \frac{M (M - 1)}{N (N - 1)} - \left(\frac{N}{N} \right)^2 = \frac{M}{N} \left(\frac{M - 1}{N - 1} - \frac{M}{N} \right) = \frac{M}{N} \left(\frac{MN - N - MN + M}{N(N - 1)} \right) = \frac{M}{N} \left(\frac{M - N}{N} \right) \frac{1}{N - 1} = -\frac{M}{N} \left(1 - \frac{N}{M} \right) \frac{1}{N - 1}
 \]
Example (continued)

- Thus

\[
\text{Var}(X) = \sum_{i=1}^{K} \text{Var}(Y_i) + \sum_{i \neq j} \text{Cov}(Y_i, Y_j) \\
= K \text{Var}(Y_1) + K(K-1) \text{Cov}(Y_1, Y_2) \\
= K \frac{M}{N} \left(1 - \frac{M}{N}\right) - K(K-1) \frac{M}{N} \left(1 - \frac{M}{N}\right) \frac{1}{N-1} \\
= K \frac{M}{N} \left(1 - \frac{M}{N}\right) \left(1 - \frac{K-1}{N-1}\right) \\
= K \frac{M}{N} \left(1 - \frac{M}{N}\right) \frac{N-K}{N-1}
\]
Example

- In the matching problem with \(n \geq 2 \) hats let \(X \) be the number of matches.
- Let \(Y_i = 1 \) if person \(i \) gets their hat and let \(Y_i = 0 \) otherwise.
- Then \(X = Y_1 + \cdots + Y_n \).
- The \(Y_i \) are Bernoulli with success probability \(1/n \).
- The expected product for \(i \neq j \) is

\[
E[Y_i Y_j] = E[Y_1 Y_2] = \frac{1}{n} \times \frac{1}{n-1}.
\]

- So

\[
\text{Cov}(Y_i, Y_j) = \frac{1}{n(n-1)} - \frac{1}{n^2} = \frac{1}{n} \left(\frac{1}{n-1} - \frac{1}{n} \right) = \frac{1}{n^2(n-1)}.
\]
Example

- The variance of X is therefore

$$\text{Var}(X) = \sum_{i=1}^{n} \text{Var}(Y_i) + \sum_{i\neq j} \text{Cov}(Y_i, Y_j)$$

$$= n \frac{1}{n} \left(1 - \frac{1}{n} \right) + n(n-1) \frac{1}{n^2(n-1)}$$

$$= 1.$$

- For $n = 1$ the variance is zero.
Example

- Let $\mu_X, \mu_Y, \sigma_X, \sigma_Y, \rho$ be real numbers with
 - $\sigma_X, \sigma_Y > 0$
 - $-1 < \rho < 1$.

- Define the joint density function

\[
f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y}\sqrt{1-\rho^2} \times \exp\left\{ -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X} \right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y} \right)^2 \right. \right.
\]
\[
\left. \left. -2\rho \left(\frac{x-\mu_X}{\sigma_X} \right) \left(\frac{y-\mu_Y}{\sigma_Y} \right) \right] \right\}
\]

- This is the bivariate normal density.
Bivariate and Multivariate Normal Distribution

\[\rho = 0.5 \]

\[\rho = -0.8 \]

\[\rho = 0.5 \]

\[\rho = -0.8 \]
Example (continued)

• Basic properties:

\[X \sim N(\mu_X, \sigma_X^2) \]
\[Y \sim N(\mu_Y, \sigma_Y^2) \]
\[\rho_{X,Y} = \rho \]

• Furthermore, for any \(a, b \)

\[aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y) \]
Recap

- MGF of a sum of independent random variables
- Covariance and correlation
- Variance of a sum of correlated random variables
- Variance of the hypergeometric distribution
- Bivariate and multivariate normal distribution
Example (continued)

Alternate form:

- Let
 \[
 Z = \begin{bmatrix} X \\ Y \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \quad C = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}
 \]

- Then, for \(n = 2 \),
 \[
 f_Z(z) = \frac{1}{(2\pi)^{n/2}(\det C)^{1/2}} \exp \left\{ -\frac{1}{2} (z - \mu)^T C^{-1} (z - \mu) \right\}.
 \]

- If
 \[
 d = \begin{bmatrix} a \\ b \end{bmatrix}
 \]
 then \(d^T Z = aX + bY \) and
 \[
 d^T Z \sim N(d^T \mu, d^T Cd).
 \]
Example (continued)

• f_Z is a proper density for any $n \geq 1$ if C is
 • symmetric
 • strictly positive definite, i.e.
 \[d^T Cd > 0 \]
 for all non-zero column vectors $d \in \mathbb{R}^n$.

• C is the variance-covariance matrix, or covariance matrix of Z, i.e.
 \[C_{ij} = \text{Cov}(Z_i, Z_j). \]

• All marginals and joint marginals are univariate or multivariate normal.

• For any non-zero column vector of constants d
 \[d^T Z \sim N(d^T \mu, d^T Cd). \]
Suppose X_1, \ldots, X_n are random variables and a_1, \ldots, a_n are constants.

We are often interested in linear combinations of the form

$$\sum_{i=1}^{n} a_i X_i.$$

Some examples are

- the sum
 $$Y = \sum_{i=1}^{n} X_i$$

- the average
 $$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} Y$$

- the residuals
 $$X_i - \bar{X}.$$
• Suppose the X_i have finite variances and let

$$\mu_i = E[X_i]$$

$$\sigma^2_i = \text{Var}(X_i)$$

$$\sigma_{ij} = \text{Cov}(X_i, X_j)$$

• The mean of a linear combination is

$$E \left[\sum_{i=1}^{n} a_i X_i \right] = \sum_{i=1}^{n} E[a_i X_i] = \sum_{i=1}^{n} a_i E[X_i] = \sum_{i=1}^{n} a_i \mu_i$$

• The variance of a linear combination is

$$\text{Var} \left(\sum_{i=1}^{n} a_i X_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \text{Cov}(X_i, X_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \sigma_{ij}$$
• These expressions can be simplified using matrix notation.
• Let

\[X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}, \quad a = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}, \quad C = \begin{bmatrix} \sigma_{11} & \ldots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \ldots & \sigma_{nn} \end{bmatrix} \]

• Then

\[a^T X = \sum_{i=1}^{n} a_i X_i \]

\[E[a^T X] = a^T \mu \]

\[\text{Var}(a^T X) = a^T Ca \]

• If \(b^T X \) is another linear combination, then

\[\text{Cov}(a^T X, b^T X) = a^T C b \]
• Suppose A is an $m \times n$ matrix of constants.
• Then $Y = AX$ is a vector of m linear combinations of the elements of X.
• The vector of means of Y is
 \[
 E[Y] = \begin{bmatrix}
 E[Y_1] \\
 \vdots \\
 E[Y_m]
 \end{bmatrix} = A\mu
 \]
• The covariance matrix of Y is
 \[AC\mathbf{A}^T\]
• These results can be used, for example, to derive the covariance matrix of least squares estimators in linear regression.
Copulas

- Suppose Z_1, Z_2 are bivariate normal with means $\mu_1 = \mu_2 = 0$, variances $\sigma_1^2 = \sigma_2^2 = 1$, and correlation ρ.
- Let $U_i = \Phi(Z_i)$, where Φ is the standard normal CDF.
- Then U_1, U_2 have uniform $[0, 1]$ marginal distributions.
- If F_1 and F_2 are two CDFs define variables $Y_i = F_i^{-1}(U_i)$.
- The resulting variables have marginal CDFs $Y_i \sim F_i$ and are dependent if $\rho \neq 0$.
- A distribution on the n-dimensional unit cube with uniform one-dimensional marginals is called a copula.
- The distribution of U_1, U_2 is called a Gaussian copula.
- Other forms of copulas are available.
- Most incorporate a small number of dependence parameters.
- Copulas are a useful mechanism for creating models for dependent variables.
Suppose X, Y are discrete.

Definition

The *conditional distribution* of X given $Y = y$ is the discrete distribution with probability mass function

$$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)} = P(X = x|Y = y)$$

for y with $P(Y = y) = f_Y(y) > 0$, and is undefined if $f_Y(y) = 0$.
Example

Uniform distribution on integer triangle (example from before):

\[f_{X|Y}(x) = \begin{cases}
 1/3 & \text{if } y = 0, \\
 1/2 & \text{if } y = 1, \\
 1/2 & \text{if } y = 2.
\end{cases} \]

\[y = 0: \quad \begin{array}{ccc}
 x & 0 & 1 & 2 \\
 f_{X|Y} & 1/3 & 1/3 & 1/3 \\
\end{array} \]

\[y = 1: \quad \begin{array}{cc}
 x & 0 & 1 \\
 f_{X|Y} & 1/2 & 1/2 \\
\end{array} \]

\[y = 2: \quad X \equiv 0. \]
• The conditional PMF can be used to compute *conditional expectations*:

\[E[g(X)|Y = y] = \sum g(x)f_{X|Y}(x|y) \]

or conditional variances.

• For our example:

\[
\begin{align*}
E[X|Y = 0] &= 1 \\
E[X|Y = 1] &= \frac{1}{2} \\
E[X|Y = 0] &= 0
\end{align*}
\]
• When Y is continuous we have a problem:

$$P(X \in A | Y = y) = \frac{P(X \in A, Y = y)}{P(Y = y)} = \frac{0}{0} = \text{???}$$

• In the jointly continuous case we can proceed by analogy to the discrete case and define the conditional density of X given $Y = y$ as

$$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}$$

if $f_Y(y) > 0$ and undefined otherwise.

• Again this is a proper density and can be used to find means, variances, etc.
Example

- For our simple uniform distribution on a triangle we have

\[
f(x, y) = \begin{cases}
2 & x, y \geq 0, x + y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
f_Y(y) = \begin{cases}
2(1 - y) & 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

- For \(0 < y < 1\) we get

\[
f_{X|Y}(x|y) = \begin{cases}
\frac{1}{1-y} & 0 \leq x \leq 1 - y \\
0 & \text{otherwise}
\end{cases}
\]

- This is a uniform distribution on \([0, 1 - y]\).
Example (continued)

- This is a uniform distribution on $[0, 1 - y]$.
- So the conditional mean and variance are

$$E[X|Y = y] = \frac{1 - y}{2}$$

$$\text{Var}(X|Y = y) = \frac{(1 - y)^2}{12}$$
The conditional CDF of X given a continuous Y can be viewed as

$$F_{X|Y}(x|y) = \lim_{h \to 0} P(X \leq x | y - h \leq Y \leq y + h)$$

There are some risks to this view.

But this view is useful when used carefully.

Problem 4.61 and the Miscellanea section at the end of Chapter 4 address this issue.
There is an analog for expectations to the law of total probability:

\[E[X] = \int E[X|Y = y]f_Y(y) \, dy \]

\[E[X] = \sum E[X|Y = y]f_Y(y) \]

This is sometimes called the *law of total expectation*.
Proof.

Fort the discrete case:

\[
E[X] = \sum_y \sum_x xf(x, y)
\]

\[
= \sum_y \sum_x x \frac{f(x, y)}{f_Y(y)} f_Y(y)
\]

\[
= \sum_y \sum_x xf_{X|Y}(x|y) f_Y(y)
\]

\[
= \sum_Y E[X|Y = y] f_Y(y)
\]
• To allow a more compact statement, let

\[h(y) = E[X | Y = y] \]

• So \(h \) is a function of \(y \).
• Let \(E[X | Y] = h(Y) \).
• Then \(E[X | Y] = h(Y) \) is a random variable.
• The law of total expectation becomes

\[E[X] = E[E[X | Y]] \]

• This holds in the discrete and jointly continuous cases, and all other cases.
Example

- The number N of customers who shop at a store on a particular day has a Poisson distribution with mean λ.
- The amount spent by customer i is a random variable X_i with mean μ.
- The X_i are mutually independent and independent of N.
- We would like to compute the expected total amount spent by all customers on the day in question,

$$S = \sum_{i=1}^{N} X_i$$
Example (continued)

- The conditional expectation of S given $N = n$ is

\[
E[S|N = n] = E \left[\sum_{i=1}^{N} X_i \bigg| N = n \right]
\]

\[
= E \left[\sum_{i=1}^{n} X_i \bigg| N = n \right] \quad \text{fix upper limit}
\]

\[
= E \left[\sum_{i=1}^{n} X_i \right] \quad \text{use independence}
\]

\[
= n \mu
\]

- The conditional expectation of S given N is the random variable

\[
E[S|N] = N \mu
\]

- The mean of S is therefore

\[
E[S] = E[E[S|N]] = E[N \mu] = E[N] \mu = \lambda \mu
\]