• When the nature of the response function (or mean structure) is unknown and one wishes to investigate it, a nonparametric regression approach may be useful.

• An example of a nonparametric regression fit for Y vs. X:
• One method of nonparametric regression is **LOWESS**.

 LOcally
 WEighted
 polynomial
 regre**SS**ion

• A lowess curve doesn’t assume any particular form to the mean structure.

• Instead, the data points themselves suggest the form of the relationship, allowing a mean structure that changes freely as x changes.
• Though it looks like someone has simply drawn a line through the points, the fitting of the lowess curve is based on statistical modeling.

• Actually, a particular polynomial regression model will be fit many times over, but each time, a different *window* of the data will be used to fit the model.

• Thus, the term ‘local’ coincides with the fact that we’re only using a fraction of the data, a *window*, each time we do a fit.
• General idea for computing a \hat{Y}_i (point on curve)

<table>
<thead>
<tr>
<th>Observed x_i</th>
<th>Observed Y_i</th>
<th>Fitted \hat{Y}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,377</td>
<td>73.1</td>
<td>?</td>
</tr>
</tbody>
</table>

– Choose a window containing x_i. The points in the window are the only points that will contribute to the fit of the locally weighted polynomial at x_i.

Wider windows give smoother lowess curves.
– Before fitting the local model, we determine the weights of the points in the window.

Higher weights will be placed on the points near \(x_i \) (local weighting), and lower weights will be placed on the points far from \(x_i \), near the window edges.

One weight function used is the Tricube weight function:

\[
T(t) = \begin{cases}
(1 - |t|^3)^3 & \text{for } |t| < 1 \\
0 & \text{for } |t| \geq 1
\end{cases}
\]

where \(t = \frac{x_{ij} - x_i}{h_i} \) for all observations \(x_{ij} \) in the window for \(x_i \), and \(h_i \) is the half-width of the window.
Use the weights (and the data) to fit a local polynomial regression. A first-order local polynomial (straight line) usually suffices (red line below shows best-fit-line).

Let \hat{Y}_i from this locally fitted polynomial regression be the prediction of Y_i at x_i.

11,377
Then, we have no further use for this locally fitted polynomial.

All that work, for one fitted point \hat{Y}_i.

<table>
<thead>
<tr>
<th>Observed x_i</th>
<th>Observed Y_i</th>
<th>Fitted \hat{Y}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>11377</td>
<td>73.1</td>
<td>68.34</td>
</tr>
</tbody>
</table>

— Connect the n fitted \hat{Y}_i values (all computed in the same manner) to form the mean structure.
• You have some choice in how ‘smooth’ the fitted mean structure is.

A ‘smoother’ curve using the $f = 1$ setting:

A less smooth curve using $f = 1/3$:
In R using the `lowess` function:

```r
> attach(Prestige)
```

```r
## Lowess plot example:
> plot(income,prestige,pch=16)
> lowess.out=lowess(income,prestige,f=1/3)
> lines(lowess.out,lwd=2)
```

where \(f \) is the the smoothing parameter.

\(f \) gives the proportion of points in the plot which influence the smooth at each value.

Even if all points are included in the window \((f = 1)\), the points still have differing weights in the polynomial fit.

Larger values of \(f \) give more smoothness.
• You can also access all the fitted \hat{Y}_i values for the given x_i. The results are returned in ascending order by the x-values:

```r
> lowess.out
$x
 [1] 611 918 1656 1890 2370 2448 2594 2847 2901 ...

$y
 [1] 19.28922 20.79308 24.32462 25.38495 27.52914 27.96910 ...

> points(lowess.out$x,lowess.out$y,col="purple",pch=1)
```
• There is another function that does local polynomial regression fitting called *loess*, which uses a slightly different weighting scheme (you can reset this if you want), but can easily be used for prediction at new x-values.
• The author of our book has also provided a lowess function inside the `scatterplot()` function in the car library.

```r
> scatterplot(income,prestige,smooth=T,span=1/3)
```

Dotted line \(\equiv\) Simple linear regression fit.
Solid line \(\equiv\) lowess fit.
...and in the `scatterplot.matrix()` function.

```r
> scatterplotMatrix(Ginzberg)
```
Lab Example (frog data)

In logistic regression, it can be useful to use the lowess fit to ‘suggest’ a model, or check on the relationship between X and Y:

\[f = \frac{2}{3} \text{ (default)} \]

\[f = \frac{1}{4} \]

\[f = \frac{1}{10} \]
(a) Outside dotted lines define window for observation \(i \), middle dotted line is on x-value of prediction (\(i^{th} \) obs).

(b) Weighting scheme. Higher weights to nearby points.

(c) Local polynomial fit (extends past window). \(\hat{Y}_i \) falls on the fitted line.

(d) Overall lowess curve (after repeating process for every observation and connecting the predicted points).