Pattern in the residuals

Consider a data set on depression...

Dependent variable:
Beck’s Depression Inventory (BDI) scale 0-63

Predictors:
income (continuous)
etnicity (factor, 6 levels)
marital (factor, 7 levels)
abortion (yes or no)
And the following classical linear model...

```r
> lm.simple=lm(bdi.score ~ income + ethnic
                   marital + abort)
```

with one continuous covariate, two categorical variables, and one factor of interest.
Residual plots:

Residual plots after log$_e$ transformation:

Normality is much better, but what’s going on with the constant variance plot?
Look at the original plot:

![Plot](image)

BDI is discrete and bounded by zero on the left.

Suppose an observation has a predicted value of 7. What is the smallest (i.e. most negative) possible residual this observation could have? \(Y - \hat{Y} = 0 - 7 = -7. \)

Similarly, the smallest possible residual for a predicted value of 10 is \(0 - 10 = -10. \)

The residuals can not go below the line \(Y = -x. \)
If this bounding seems to suggest the conditional distributions are not close to normal (i.e. it looks VERY chopped off), then perhaps a different modeling would be a better choice.

Just knowing that the BDI was bounded between 0 and 63 does not tell us this residual pattern will be strong enough to be a problem. It depends on the actual fitted values and the actual observed values.

The problem tends to be most extreme when a large amount of the data is predicted by the linear model to be near the bound, such as $\hat{Y} = 0$.

The other question that seems relevant to the residual plot is the sparse number of predictions with $\hat{Y} > 13$.
> table(ethnic)

<table>
<thead>
<tr>
<th>ethnic</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>natAlaskan/AmerInd</td>
<td>2367</td>
<td>39</td>
<td>106</td>
<td>155</td>
<td>134</td>
<td>40</td>
</tr>
</tbody>
</table>

> table(marital)

<table>
<thead>
<tr>
<th>marital</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>366</td>
<td>1947</td>
<td>77</td>
<td>125</td>
<td>316</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Similar situation from an earlier semester

A social work client was predicting ‘Anger/Aggression’ on a discrete scale from 0 to 27:

![Histogram of AngerAggression](image)

> `lm.out=lm(AngerAggression ~ Gender + SES + Age + ... + Conflict)`
Residual plot from linear model:

In the end, a Poisson regression was fitted to the data (their suggestion). The assumptions of that model are more difficult to check than a classical linear model, but perhaps it provided a better fit to the conditional distributions.
Past client’s linguistics model

The response is the proportion correct out of 12 questions and is bounded between 0 and 1.

```
proc mixed data=combinedMod;
class Group Condition ID;
model PropCorrect = Group Condition Group*Condition/ddfm=satterth;
random ID(Group);
run;
```
Checking constant variance assumption:

Checking normality assumption:
Note only is the response discrete, but it is bounded between 0 and 1.

The residuals on the red line had observations = 1.
The residuals on the green line had observations = \(\frac{11}{12}\).
The residuals on the blue line had observations = \(\frac{10}{12}\).
Past client: Yupeng Kou

Conditional Residuals for taskscore100

Residual Statistics
- Observations: 168
- Minimum: -36.38
- Mean: 15E-15
- Maximum: 41.7
- Std Dev: 13.636

Fit Statistics
- Objective: 1259.7
- AIC: 1263.7
- AICC: 1263.8
- BIC: 1265
Ben Miller for Oucher:

```
jitter(lm.out$fitted, factor = 0.2)
lm.out$residuals
```
This is another linear model residual plot when the response was bounded between 0 to 1.

This one had a fair number of observations near both ends of the bounded range.
Modeling option: Beta regression

If your response is continuous but bounded between 0 and 1, *beta regression* is an option.

\[Y \mid x \sim \text{beta}(\alpha(x), \beta(x)) \]
You can perform hypothesis tests on the α’s and β’s parameters to test if groups are statistically significantly different from each other.

The observed data may fit this type of model better, but you may have difficulty convincing a client to use this type of a model (for publication submission, for instance).