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Abstract

In the past few years, marketing researchers have been increasingly using sophisticated
computerized search algorithms to find experimental designs. This paper reviews some
fundamental s of experimental design, orthogonality, and balance, and introduces the idea of
design efficiency. It then compares some widely available design software including Sawtooth
Software's CVA and SAS Institute's OPTEX programs.

I ntroduction

Conjoint analysisis used to study product purchase decisions when the products have several
attributes or factors. Consumers "consider jointly" all of the attributes of a set of products, make
trade offs, and then report their preferences for the products. The design of experimentsisa
fundamental part of conjoint analysis. Experimental designs are used to construct the
hypothetical products.

For much of the history of experimental design and statistics, researchers used orthogonal
designs that they looked up in tables. When an ANOV A model isfit with an orthogonal design,
the parameter estimates are uncorrelated, which means each estimate is independent of the other
termsin the model. More importantly, orthogonality usually implies that the coefficients will
have minimum variance and hence maximum precision. For these reasons, orthogonal designs
are usualy quite good. ANOVA was widely used before the widespread availability of modern
computers. With orthogonal designs, relatively simple formulas were available for hand or
calculator ANOVA computations. Even as late as the 1970's, this was an important reason to use
orthogonal designs. However, in the last ten to twenty years, general linear models software that
does not require orthogonality has become widely available, so orthogonality is not as important
asit used to be.

Like ANOVA, the early history of conjoint analysisis based on orthogonal designs.
However, for many practical problems, particularly in marketing research, orthogonal designs
are simply not available. Examples:

e when there are many attributes

e when the number of attribute levelsis different for most of the factors

e anonstandard number of cardsis desired

¢ when some combinations are unrealistic, such as of the best product features at the lowest
price.



In these and other situations, nonorthogonal designs must be used. During the past severd
years, marketing researchers are increasingly using efficient nonorthogonal designs (Kuhfeld,
Tobias, and Garratt, 1994). These designs are efficient in the sense that the precision of the
parameter estimates is maximized. Efficient designs can be found with the aid of a computer for
nonstandard situations in which there are no orthogonal designs. A computerized search, with
software such as the Sawtooth Software CVA (Conjoint Vaue Analysis) designer or the SAS
Institute (1995) OPTEX procedure can be used to find good, efficient, and realistic conjoint
designs.

Before exploring experimental design in detail, it isinstructive to compare forms of conjoint
anaysis. CVA can be used to perform standard full-profile conjoint analysis where subjects rank
or rate one product at atime. CVA can also be used for pair-wise presentation of products where
subjects are asked to compare two products. CVA istypically used for paper and pencil
administered studies. ACA (Adaptive Conjoint Analysis) is another widely used method for
conjoint analysis. ACA interactively administers a conjoint study, adapting its questions to the
individual respondent. ACA was designed for problems that generally could not be handled by
full-profile methods, such as larger problems. CBC (Choice Based Conjoint) is used for fitting a
multinomial logit model to discrete choice data. CBC, like ACA, collects data interactively,
directly administering the study on the computer. However, CBC aso has a paper-and-pencil
module. ACA adapts its questions to the respondent; CBC and CV A do not.

CVA creates an efficient conjoint experiment using a computerized search. ACA does not
attempt to create an optimal design. Instead, it is guided by another criterion, asking maximally
informative questions. For choice models, it isimpossible to create an efficient design without
first knowing the "true" parameters. Hence, the construction of choice designs must be guided
by other principles. CBC strives to make sure that for each pair of attributes, each level is paired
with each other level (at least nearly) equally often.

Orthogonal Experimental Designs

An experimental design isaplan for running an experiment. The factors of an experimental
design are variables that have two or more fixed values, or levels. Experiments are performed to
study the effects of the factor levels on the dependent variable. In a conjoint study, the factors
are the attributes of the hypothetical products or services, and the response is preference or
choice. For example, Price could be afactor with levels $1.49, $1.99, and $2.49. A designis
orthogonal if al effects can be estimated independently of all of the other effects (excluding the
intercept). A design is balanced when each level occurs equally often within each factor, which
means the intercept is orthogonal to each effect. Imbalance is a generalized form of
nonorthogonality, which increases the variances of the parameter estimates.

A full-factorial design consists of all possible combinations of the levels of the factors. For
example, with five factors, two at two levels and three at three levels (denoted223°) ¢, there are

108 possible combinations. In afull-factorial design, all main effects, all two-way interactions,
and all higher-order interactions are estimable and uncorrelated. A full-factorial designis
balanced and orthogonal. The problem with afull-factorial design isthat, for most practical
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situations, it istoo cost-prohibitive and tedious to have subjects rate all possible combinations.
For this reason, researchers often use fractional-factorial designs, which have fewer cards than
full-factorial designs. The price of having fewer cardsis that some effects become confounded.
Two effects are confounded or aliased when they are not distinguishable from each other.

A special type of fractional-factorial design isthe orthogonal array, in which all estimable
effects are uncorrelated. Orthogonal arrays are categorized by their resolution. The resolution
identifies which effects, possibly including interactions, are estimable. For resolution 111
designs, all main effects are estimable free of each other, but some of them are confounded with
two-factor interactions. For resolution V designs, all main effects and two-factor interactions are
estimable free of each other. Higher resolutions require larger designs. Orthogonal arrays come
in specific numbers of cards (such as 16, 18, 20, 24, 27, 28, ...) for specific numbers of factors
with specific numbers of levels. Resolution 111 orthogonal arrays are frequently used in
marketing research. The term "orthogonal array," asit isused in practice, isimprecise. It refers
to designs that are both orthogonal and balanced, and hence optimal. It also refers to designs that
are orthogonal but not balanced, and hence potentially nonoptimal.

Orthogonality and Balance

A good metaphor for discussing experimental designsisaraft. A raftisaflat boat that you
hope will support your weight and keep you from getting wet. An experimental design forms the
basis of a conjoint study, and you hope it will provide you with good information to support your
marketing decisions. If your raft is not properly constructed, you will fall in the water and get
eaten by alligators. If your experimental design is nonoptimal, you will have less information to
use to make important decisions, and if your decisions are wrong, you will be eaten alive by your
competitors.

A design with asingle two-level factor islike aboard, a one-dimensional raft, supported by
Styrofoam floats. For maximum stability with N, floats (cards), put N, /2 floats under each

end of the board. A design constructed according to this principle is balanced. If you put floats
in the middle or more floats on one end, the board will be less stable. See figure 1.



Figure 1. Balance and Orthogonality, Illustrated with Rafts
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Two two-level factors are like an ordinary square raft, supported by Styrofoam floats. For
maximum stability, with N floats (cards), put N /4 floats under each corner of the raft. A
design constructed according to this principle is orthogonal and balanced. If you put floatsin the
middle or more floats on some corners, the raft will be less stable. Sometimesit is not possible
to equally support all corners. Consider N, 18 with two two-level factors. Then the best you
can do isfour cards with the (a, a) combination, four cards with the (b, b) combination, five
cards with the (a, b) combination, and five cards with the (b, a) combination. A design
constructed according to this principle is balanced and nearly orthogonal. Orthogonal designs
can be very unbalanced. Thisleadsto much less information being collected about some
combinations than others. See Figure 1.



With three-level factors or more than two factors, the raft analogy is harder to imagine.
However, the principles are the same. In orthogonal and balanced designs, the corners of the
design space are well supported and equally supported. Nearly orthogonal and balanced designs
where the corners are nearly equally supported are often the best that you can do in practice.

Coding

Before adesign isused, it must be coded. One standard coding is the binary or dummy
variable or (1, 0) coding. Another standard coding is effects or deviations from means or (1, 0,
-1) coding. For evaluating design efficiency, we prefer an orthogonal coding. Standard
nonorthogonal codings such as effects or binary coding are generally correlated, even for
orthogonal designs. We use orthogonal codings so that we can get efficiency statistics scaled to
range from O to 100. Efficiencies computed using nonorthogonal codings will have asmaller
range (except for the specia case of two-level factors).

e First acolumn of onesis coded for the intercept.

e A two-leve factor (a, b) is replaced by one column.

Binary coding: a isreplaced with 1
b 0
Effects coding: a isreplaced with 1
b -1
Orthogonal coding: a isreplaced with 1
b -1

o A threelevel factor (a, b, ¢) isreplaced by two columns.

Binary coding: a isreplaced with 1 0
b 0 1
c 0 0
Effects coding: a isreplaced with 1 0
b 0 1
c -1 -1
Orthogonal coding: a isreplaced with 1.224745 -0.707107
b 0 1414214
c -1.224745 -0.707107

e A four-level (a, b, c, d) factor is replaced by three columns.

Binary coding: a isreplaced with 1 0 0
b 0 1 0
c 0 0 1



Effects coding: is replaced with

cooco®a
RPOORrRO
RPORrR OO
PR OOO

Orthogonal coding: isreplaced with  1.414215 -0.816497 -0.57735
0 1.632993 -0.57735
0 0 1.73205

-1.414214 -0.816497 -0.57735

o 0O Tw

e The orthogonal coding for an n-level factor isfound by creating an n x n matrix C, with
an intercept column and n - 1 columns containing the effects coding, then creating

JnC(C'C) ™2 and discarding the first column.
Design Efficiency

Efficiencies are measures of design goodness. Common measures of the efficiency of
and (N, xp) orthogonally coded design matrix X are based on the information matrix X'X .

The variance-covariance matrix of the vector of parameter estimates 3 in aleast-squares
analysisis proportional to (X' X)™*. Thevarianceof i isproportional to the x, element of
(X'X)™. Anefficient design will have a"small" variance matrix, and the eigenvalues of

(X X)™ provide measures of its"size." Two common efficiency measures are based on the
idea of "average variance" or "average eigenvalue’. A-efficiency isafunction of the arithmetic
mean of the variances, which is given by trace (X X)™)/ p. (Thetraceisthe sum of the
diagona elementsof (X  X)™*, which is the sum of the variances and is also the sum of the
eigenvaluesof (X X)™.) D-efficiency isafunction of the geometric mean of the eigenval ues,

which is given by [(X X)*1|1/p. (The determinant, | X' X)™|, is the product of the eigenvalues

of (X X)™*, and the pth root of the determinant is the geometric mean.) A third common
efficiency measure, G-efficiency, is based on o ,, the maximum standard error for prediction
over the candidate set. All three of these criteria are convex functions of the eigenvalues of
(X X)™ and hence are usually highly correlated.

A-efficiency is based on the average of the variances of the parameter estimates.
A-efficiency is perhaps the most natural criterion to use in evaluating design goodness. As

orthogonality decreases, both the off-diagonal and diagonal elementsof (X X)™ increase.

Looking at the average variance while ignoring the off-diagonal covariances, is reasonable
because the variances increase as the covariancesincrease. D-efficiency is perhaps lessintuitive

Eigenvalues are proportional to squared lengths. To understand eigenvalues, visualize a slightly deflated American football. Imagine
holding it so the longest dimension is horizontal. Sinceit is partly deflated, imagine it positioned so the next longest dimension is vertical,
and the shortest dimension corresponds to depth, the direction perpendicular to horizontal and vertical. The squared horizonta length isthe
first eigenvalue, the squared vertical length is the second eigenvalue, and the squared depth length is the third eigenvalue. These three
numbers provide information about the size of the space occupied by the football. The eigenvalues of avariance matrix give information
about the sizes of the variances.



than A-efficiency, but both provide a measure of the average size of the variance matrix.
D-efficiency is used more often in practice for two reasons. Relative D-efficiency” isinvariant
under different codings; relative A-efficiency isnot. Also D-efficiency is easier to update, so
programs based on D-efficiency run faster.

For all three criteria, if abalanced and orthogonal design exists, then it has optimum
efficiency; conversely, the more efficient adesign is, the more it tends toward balance and
orthogonality. Assuming an orthogonally coded X:

e A designisbaanced and orthogonal when (X X)™ isdiagonal.

e A designisorthogona when the submatrix of (X X)™, excluding the row and column
for the intercept, is diagonal; there may be off-diagonal nonzeros for the intercept.

e A designisbaanced when all off-diagona elementsin the intercept row and column are
zero.

e Aseéfficiency increases, the absolute values of the diagonal elements get smaller and the
diagonals approach 1/ N .

These measures of efficiency are scaled to range from 0 to 100:

A-efficiency = 100 x 1, =)
Nptrace((X X))/ p
.. 1
D-efficiency = 100 x : T
No|(X'X)7|
Jp/ N
G-efficiency = 100 x VPN

Gm

These efficiencies measure the goodness of the design relative to hypothetical orthogonal
designs that may be far from possible, so they are not useful as absolute measures of design
efficiency. Instead, they should be used relatively, to compare one design to another for the
same situation. Efficienciesthat are not near 100 may be perfectly satisfactory.

* %

Relative efficiency isthe ratio of two efficiency statistics.



Figure 2. Candidate Set and Optimal Design
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Figure 2 shows an optimal design in four cards for a simple example with two factors, using
interval measure scales for both. There are three candidate levels for each factor. The
full-factorial design is shown by the nine asterisks, with circles around the optimal four design
points. Asthisexample shows, efficiency tends to emphasize the corners of the design space.
Interestingly, nine different sets of four points form orthogonal designs - every set of four that
forms arectangle or square. Only one of these orthogonal designsis optimal, the one in which
the points are spread out as far as possible.

Computer-Generated Design Algorithms

When a suitable orthogonal design does not exist, computer-generated nonorthogonal designs
can be used instead. Various algorithms exist for selecting agood set of design points from a set
of candidate points. The candidate points consist of all of the factor level combinations that may
potentially be included in the design, for example the nine pointsin Figure 2. For small
problems, such as 2°3°, agood candidate set is the full-factorial design, since it contains only
108 cards. For larger problems, fractional-factorial designs make good candidate sets. When the
full-factorial is more than say 1024 cards, it is always a good ideato try afractional-factorial
candidate set. Even with software that can handle several thousand candidates, it is good to also
try small good candidate sets, becauseit is easier for the computer to find good designs when the
search is limited to asmall region.

N, the number of cards, ischosen by the researcher. Unlike orthogonal arrays, N, can be
any number aslong as N, > p, where p is the number of parameters.” The algorithm searches
the candidate pointsfor aset of N design points that is optimal in terms of a given efficiency
criterion. There usually is not enough timeto list all N, -run designs and choose the most
efficient or optimal design. For example, with 223° in 18 cards, there are 108! / (18!(108 - 18)!)
=1.39 x 10% possible designs. Instead, nonexhaustive search algorithms are used to generate a

" The number of parameters is the sum across all attributes of the number of levels of each attribute, minus the number of attributes, plus
one for the intercept.



small number of designs, and the most efficient oneis chosen. Usually, aninitial designis
randomly selected from the candidates, then it is iteratively refined. The algorithms select points
from the candidate set for possible inclusion or deletion then update the efficiency criterion. The
points that most increase efficiency are added to the design. These algorithms invariably find
efficient designs, but they may fail to find the optimal design, even for the given criterion. For
this reason, we prefer to use terms like infor mation-efficient and D-efficiency over the more
common optimal and D-optimal.

There are many algorithms for generating information-efficient designs. We will begin by
describing some of the simpler approaches and then proceed to the more complicated (and more
reliable) algorithms. Dykstra's (1971) sequential search method starts with an empty design and
adds candidate points so that the chosen efficiency criterion is maximized at each step. This
algorithm isfast, but it isnot very reliable in finding aglobally optimal design. Also, it always
finds the same design (due to alack of randomness). These next algorithms are typically run
repeatedly for a given candidate set and different random initial designs, then the most efficient
design ischosen. The Mitchell and Miller (1970) simple exchange algorithm is a slower but
more reliable method. It improves an initial design by adding a candidate point and then deleting
one of the design points, stopping when the chosen criterion ceasesto improve. The DETMAX
algorithm of Mitchell (1974) generalizes the simple exchange method. Instead of following each
addition of a point by a deletion, the algorithm makes excursions in which the size of the design
may vary. These three algorithms add and delete points one at atime.

The next two algorithms add and del ete points simultaneously, and for this reason, are
usually more reliable for finding the truly optimal design; but because each step involves a
search over all possible pairs of candidate and design points, they generally run much more
slowly (by an order of magnitude). The Federov (1972) algorithm simultaneously checks each
candidate point and design point pair, then makes the swap that most increases efficiency. Cook
and Nachtsheim (1980) define a modified Federov algorithm that checks each candidate point
and design point pair and makes every swap that increases efficiency. The resulting procedureis
generally as efficient as the simple Federov algorithm in finding the optimal design, but it isup
to twice asfast.

CVA Designer

The CVA design software automatically: creates a candidate set, excludes prohibited pairs,
creates an initial design, uses the modified Federov algorithm to improve the efficiency, then it
discards the candidate set and performs additional iterations to improve balance and overall
efficiency. It repeats this process a user-controlled number of times (five by default) then
outputs the best design. Here is more detail on the algorithm:

e CVA generates the candidate set with a guided randomization process. For each
attribute, CVA randomly picks a pair of levels from all permitted pairs that have been
presented least often. Pairs of levels are not repeated until all other permitted pairs have been
shown. This creates a candidate set with good balance. For example, when a 20-profile
design isrequested, CVA by default creates a candidate set with 120 profiles.

e Next, CVA createsaninitial design. It startswith the full candidate set and excludes
one card at atime, the card that contributes the least to the design. CVA considers excluding
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each point and checks its effect on efficiency. It performs the exclusion that leads to the
maximum efficiency. At first, efficiency may actually increase as the points that provide the
least information are removed. Then, typically, efficiency will start to decrease. Theinitial
design has the same number of profiles as the final design—for example 20.

e Next, CVA usesthe modified Federov algorithm, swapping (previously excluded)
candidates back into the design until efficiency stops improving.

e For thefinal step, the candidate set is discarded. CV A looks for imbalance and
identifies the levels that appear most often. CV A considers changing those levels, making
sure that prohibited pairs are not introduced. If changing alevel to improve balance also
increases efficiency, it isdone. In effect, CVA isusing avirtual candidate set in this step.
Possible candidates include every card in the full factorial (minus prohibited pairs), but only
arelatively few candidates are considered, those that improve balance.

e Theentire processis repeated and the best design is chosen.

We will investigate the CV A designer for use in full-profile conjoint experiments. Other
capabilities of CVA such asits ability to generate designs for pair-wise presentation are beyond
the scope of this paper.

The OPTEX Procedure

The OPTEX procedure requires the user to create a candidate set. A good candidate set for a
small problem isafull-factorial design. Resolution I11, 1V, V, and perhaps larger designs are
good candidate sets for larger problems (Kuhfeld, 1996). Unrealistic or undesirable
combinations can then be excluded from the candidates. PROC OPTEX starts with arandom
initial design and then iteratively improvesit. PROC OPTEX has sequential, exchange,
DETMAX, and Federov agorithms, but | usually use Modified Federov. The entire processis
repeated (10 times by default), and the best design is chosen.

An Empirical Evaluation of CVA and PROC OPTEX

This section compares CVA and PROC OPTEX with problems. The first three examples are
plausible conjoint studies. The next two examples are harder problems than you are likely to
find in areasonable conjoint study.

The first test was arelatively simple problem, 2°3° in 18 cards. The optimal design,
described by Kuhfeld, Tobias, and Garratt (1994), is nonorthogonal. CV A requires the user to
enter the names of the factors, the levels, and the number of cards. CVA generates the candidate
set and performs the searches. | created afull-factorial design for the PROC OPTEX candidate
set. Both CVA and PROC OPTEX found the optimal design, with D-efficiency = 99.861 and
perfect balance, in a matter of seconds.

The next test was harder, 2°3°5% in 30 cards, but still small enough to be realistic for a
conjoint experiment. CVA found agood design with D-efficiency = 96.2149 in about three
minutes. The balance was perfect. All of my attempts with CVA to find a better design, by both
generating more designs and changing the size of the candidate set failed. Using PROC OPTEX,
| was able to find an unbalanced design with D-efficiency = 97.6690. With subsequent tries, |
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found a perfectly balanced design with D-efficiency = 98.0327. Since the full-factorial design at
2700 cardsis large, | started with fractional-factorial candidate sets and worked my way up to
the full factorial. The CVA design was slightly (98%) less efficient than the PROC OPTEX
design, and both programs found perfectly balanced designs.

The next test was harder still, 223°5°7 again in 30 cards. CVA found agood design with D-
efficiency = 88.2956, which | was able to increase to 89.8463 in subsequent tries. The balance
was excellent. With PROC OPTEX, | found designs with efficiency ranging up to 92.2954. The
CVA design was dightly less efficient than the PROC OPTEX design but much better balanced.

Next, | tried alarger and much more difficult problem, 234567 89 10 11, using the CVA
recommended 168 cards. Thisisnot arealistic design for afull-profile conjoint analysis (at least
without blocking). Still, it seemed reasonable to test CVA's performance with alarger and more
difficult problem. CVA found a design with efficiency 94.3472, whereas PROC OPTEX found a
design with efficiency 96.3529. Again, the PROC OPTEX design was slightly more efficient,
and the balance in the CV A design was excellent and much better than the PROC OPTEX
design.

Last, | tried alarge problem, 234%5%6 with 24 cards and prohibited pairs. CVA alowsthe

user to specify pairs of attribute levels that should never be presented together, for example
largest size and smallest price. PROC OPTEX allows any combination to be excluded from the
candidate set. Thefollowing pairswere prohibited: (x| =1,x2=1), (x2=1,x3=1), (x3=1, x4
=1),(x4=1,x5=1),(x5=1,x6=1),and (x6 = 1, x7 = 1). Using afull-factorial candidate set
and generating ten designs, PROC OPTEX found a design with D-efficiency = 86.9362 in eight
minutes. Generating 100 designs took one hour and resulted in a D-efficiency of 88.4463.
Balance was good but not perfect. Thefirst level tended to occur less often, particularly in the
two- and three-level factors due to the prohibited pairs. | easily found a CVA design with D-
efficiency = 81.9513. Letting CVA run overnight resulted in D-efficiency = 84.2510. The CVA
design was better balanced than the OPTEX design.

CVA iseasier to usethan PROC OPTEX, particularly for the less-experienced user, because
CVA automatically creates the candidate set. In contrast, for the more-experienced user, PROC
OPTEX ismore likely to find a more efficient design because the user can control the candidate
set. PROC OPTEX typicaly runs faster than CVA, but with more user set-up time. For all but
very small problems, PROC OPTEX istypically run several times with different candidate sets,
then the best design from the best candidate set is chosen. For difficult problems, there are many
ways to create reasonable candidate sets, and it isimpossible to predict which way will work
best. Learning how to create good candidate setsis not easy.

CVA usually finds good designs with excellent balance. For small problems like you would
typically encounter in afull-profile conjoint study, CVA seemsto do an excellent job. However,
for larger and more difficult problems, it often fails to find more efficient designs that can be
found with PROC OPTEX. The differencesin efficiency between the two programs are small
and may in part be offset by CVA's better balance. Balance is very important. Y ou do not want
any level (particularly for attributes like brand and price) appearing alot more often than some
other level. Some analysts generate many designs, output the most efficient few, and them pick

" This desi gn is amost saturated since there are 23 parameters, so this example is not realistic.
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the most balanced design from the most efficient few designs, even if the most balanced design
is not the most efficient. In the next section, | will discuss ways in which CVA and PROC
OPTEX might be improved.

An Evaluation of CVA and PROC OPTEX Algorithms

CVA starts by creating a guided random candidate set with good balance. It then creates an
initial design by excluding cards from the candidate set. The approach typically used with
PROC OPTEX isfor the user to create afull-factorial design for small problems, and resolution
11,1V, V, and perhaps larger candidate sets for larger problems. PROC OPTEX by default uses
arandom sample of the candidate set astheinitial design. The next step for both methodsis the
modified Federov swaps, which is quite standard and works quite well. CVA hasafinal step
that iterates further, smultaneously increasing efficiency and improving balance. Thislast CVA
step is new, innovative, and | believe avery good idea.

The reason that PROC OPTEX can often find a more efficient design than CV A isdueto the
first two steps. | suggest that Sawtooth Software seriously look at using afull factoria for the
candidate set with small problems and fractional factorials for larger problems. Candidate sets
with well over one thousand cards should not pose any problems on today's PC, althoughitis
frequently the case that a smaller candidate set is actually better. Perhaps using CVA's guided
randomization to augment a core fractional-factorial candidate set would be agood idea. (I have
never actually tried this.) | also suggest that Sawtooth Software consider using a random sample
from the candidate set as the initial design.

For small problems, the CVA modified Federov swaps are reasonably fast. For larger
problems | think they could be made faster. The final efficiency and balance optimization is no
doubt the reason why CV A does such agood job of finding (at least nearly) balanced designs.
However, it isslow for large problems and could be made faster.

PROC OPTEX would benefit from a graphical user interface, an option for automatic
candidate set creation, and an option to optimize balance like CVA does.

Conclusions

Computer-generated experimental designs can provide both better and more general designs
for conjoint studies. Classica designs, obtained from books or computerized tables, are good
when they exist, but they are not the only option. When the design is nhonstandard and when
there are restrictions, a computer can generate a design, and it can be done quickly. For most
conjoint studies, agood design can be generated in afew minutes. Furthermore, when the
circumstances of the project change, a new design can again be quickly generated. The
computerized search usually doesagood job, it iseasy to use, and it can create a design faster
than manual methods, especially for the nonexpert. In nonstandard situations, simultaneous
balance and orthogonality may be unobtainable. Often, the best that can be hoped for is optimal
efficiency. Computerized algorithms help by searching for the most efficient designs from a
potentially very large set of possible designs.

| am very pleased that more marketing researchers and more software packages are now

using efficiency to guide their design search. PROC OPTEX does an excellent job in finding
efficient designs even for very large problems, however less-experienced users may find it hard
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touse. CVA does an excellent job with small problems (which are the kinds of problems for
which it was designed), a good job with larger problems, produces designs with excellent
balance, and is particularly well suited for less experienced users. The final stage of the CVA
designer algorithm isinnovative, and does an excellent job of producing at least a nearly
balanced design.
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