class: center, middle, title-slide .title[ # Data Visualization and Data Technologies ] .author[ ### Luke Tierney ] .institute[ ### University of Iowa ] .date[ ### 2024-01-22 ] --- class: center, middle <link rel="stylesheet" href="stat4580.css" type="text/css" /> # Basics --- ## Objectives -- Learn how to effecitvely use visualization for * exploring and understanding data * communicating and explaining insights -- Learn how to use data technologies for * acquiring data * cleaning data * organizing data -- Learn how to do this in ways that are * reproducible * reusable * shareable --- ## Topics -- Data visualization * some history of visualization * learning the basic graph types * how to create basic graphs in R * human perception, and how it affects visualization * using understanding of perception to guide evaluation and design * dynamic and interactive visualizations -- Data technologies * basic data types * reshaping and transforming data * aggregating and summarizing data * merging several data sets * regular expressions for cleaning data * harvesting data from the web -- Reproducible research and collaboration * literate programming and data analysis * version control for collaboration <!-- ![](img/R4DS-data-science.png) --> --- ## Recommended Text Books -- > Kieran Healy (2018) [_Data Visualization: A practical > introduction_](https://socviz.co/), Princeton -- > Paul Murrell (2009). [_Introduction to Data > Technologies_](http://www.stat.auckland.ac.nz/~paul/ItDT/), Chapman > & Hall/CRC. -- > Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund (2023), > [_R for Data Science (2nd Edition)_](https://r4ds.hadley.nz/), > O'Reilly. -- > Claus O. Wilke (2019) [_Fundamentals of Data > Visualization_](https://clauswilke.com/dataviz/), O’Reilly, > Inc. ([Book source on > GitHub](https://github.com/clauswilke/dataviz); [supporting > materials on GitHub](https://github.com/clauswilke/dviz.supp)) --- ## Prerequisites -- An introductory statistics course. -- A regression course. -- Strongly recommended: Prior exposure to basic use of statistical programming software, such as R or SAS, as obtained from a regression course. --- ## Assessment -- Quizzes * Short quizzes will be posted on **ICON** after most lectures. -- Homework * Homework assignments will be due approximately once a week. * You will typically submit your work by pushing it to your GitLab repository by 5:00 PM on the due date. * Your homework solutions should be written as reports, using proper sentences and paragraphs to present your results. -- Project <!-- dates are for 2023 --> * You will do a project developing a visual analysis of a data set of your choosing. * You can work on your own or in a group of up to three students. * Your project should represent about 10 hours of work for each student. * A one page proposal for your project is due on Monday, March 18. * A final report on your project is due on Friday, May 3. * Your project may be shared with the class through the class web page. -- Your grade will be based on quizzes (10%), homework (70%) and the project (20%). --- ## Tools -- We will be using * [R](https://www.r-project.org) for computing and graphics * [R Markdown](https://rmarkdown.rstudio.com) for creating reproducible reports. * [`git`](https://git-scm.com/) and the [UI GitLab](https://research-git.uiowa.edu) service for revision control and submitting work. -- You will need an editor or IDE; you can use * [RStudio](https://posit.co/products/open-source/rstudio/) for editing and more * any other editor or IDE -- To [access these tools](access.html) you can * use the [UI IDAS RStudio Notebook Server](https://notebooks.hpc.uiowa.edu/spring2024-stat-4580-0001/hub/home), * use the CLAS Linux systems via the [FastX remote desktop](https://fastx.divms.uiowa.edu), * or install your own on your computer -- For help installing your own a good place to start is <https://happygitwithr.com/> --- layout: true ## First Steps: Do This Today! --- -- Visit the [UI GitLab site](https://research-git.uiowa.edu) at <https://research-git.uiowa.edu> and log in with your HawkID. -- Make sure you can access the UI IDAS Rstudio Notebook Server with your HawkID and password. * The server is available at <https://notebooks.hpc.uiowa.edu/spring2024-stat-4580-0001/hub/home>. * If you cannot log into the RStudio server, please let your TA or me know immediately. -- Make sure you are able to log into the CLAS Linux systems with your HawkID and password. * The easiest way is to use the [FastX](https://fastx.divms.uiowa.edu) client at <https://fastx.divms.uiowa.edu>. * If you cannot log into the CLAS workstations, please let your TA or me know immediately. -- Look at the [brief introduction to git](../git.html) or the beginning of <https://happygitwithr.com> to see what `git` is about and how to get started with it. <!-- * Working with the UI GitLab from RStudio or the command line will use [SSH](https://en.wikipedia.org/wiki/Secure_Shell) communication. You will need to do a few things to set this up: * Set up an SSH key by following [these instructions](https://happygitwithr.com/ssh-keys.html). Alternate instuctions are [available here](https://wiki.uiowa.edu/display/githubdocs/Creating+SSH+Keys). (For Linux follow the Mac instructions.) * To use SSH to communicate with UI GitLab from off-campus you will need to use a [VPN connection](https://its.uiowa.edu/vpn), --> --- Make sure you have access to R and try someting like this: ```r with(faithful, plot(eruptions, waiting, xlab = "Eruption time (min)", ylab = "Waiting time to next eruption (min)")) ``` -- .pull-left[ The result is a plot that looks like this: ] .pull-right[ <img src="intro_files/figure-html/unnamed-chunk-1-1.png" style="display: block; margin: auto;" /> ] --- layout: true ## Getting Set Up --- Log into the [UI GitLab site](https://research-git.uiowa.edu) at <https://research-git.uiowa.edu> to get your GitLab account activated. -- Decide where you want to work: * [UI IDAS RStudio Notebook Server](https://notebooks.hpc.uiowa.edu/spring2024-stat-4580-0001/hub/home) * [FastX](https://linux.clas.uiowa.edu/help/fastx) for accessing the CLAS Linux systems via the [web interface](https://fastx.divms.uiowa.edu) or the [desktop client](https://linux.clas.uiowa.edu/help/fastx/desktop). * Your own computer. -- Setup needed for IDAS RStudio Server: * If you are registered then you should have an account now. If you add the course late you should have an account within a day. * [Introduce yourself to Git](https://happygitwithr.com/hello-git.html). -- Setup needed for CLAS Linux: * Install the [desktop client](https://linux.clas.uiowa.edu/help/fastx/desktop) if you want to use it. Otherwise, use the [web interface](https://fastx.divms.uiowa.edu). * Your account will be set up automatically the first time you log in. * [Introduce yourself to Git](https://happygitwithr.com/hello-git.html). <!-- * Set up an SSH key if you don't have one already. * Add your public SSH key to your UI GitHub account. --> --- -- Setting up your own computer: (A good resource for help with this is <https://happygitwithr.com>): -- * Install the current version of R. * You might have older versions from other courses (e.g. from [Anaconda](https://www.anaconda.com/)). * You will need to add packages as we go along. -- * Install RStudio if you want to use it (highly recommended). -- * Install Git. -- * [Introduce yourself to Git](https://happygitwithr.com/hello-git.html). <!-- * Set up an SSH key if you don't have one already. * Add you public SSH key to your UI GitHub account. --> -- Even if you decide to use your own computer you should make sure you can use the RStudio server or CLAS systems as a backup. <!-- ## Checking and Setting Up an SSH Key * Using RStudio: Check/create your key by going to **Tools** > **Global** > **Options** > **GIT/SVN**. * From a shell command line: use `ssh-keygen`. * Open terminal or shell and do: ```bash cat <filename>.pub ``` and copy to the clipboard. * On the [UI GitLab web page](https://research-git.uiowa.edu) go to `<your icon at right>` > **Settings** > **SSH Keys** and paste in the public key. * Check that you can clone your repository * RStudio: go to **File** > **New Project** > **Version Control** > **Git**. * From a shell command line use `git clone` * On Linux and Mac OS you can avoid the need to type your pass phrase many times by calling `ssh-add` in a shell. This should remember your pass phrase until you log out. * In principle this is possible on Windows, but the setup is more complicated. This [link](https://help.github.com/articles/working-with-ssh-key-passphrases/#platform-windows) provides some hints. --> --- layout: false class: center, middle # Some Examples --- layout:true ## Life Expectancy in the Americas in 2007 --- The data is from the [GapMinder](https://www.gapminder.org) project. .hide-code[ ```r library(dplyr) library(ggplot2) library(gapminder) le_am_2007 <- filter(gapminder, year == 2007, continent == "Americas") |> mutate(country = reorder(country, lifeExp)) knitr::kable(select(le_am_2007, country, lifeExp), col.names = c("Country", "Life Expectancy (years)"), digits = 1, format = "html") |> kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE, font_size = 14) |> kableExtra::scroll_box(height = "300px", width = "75%") ``` <div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:300px; overflow-x: scroll; width:75%; "><table class="table table-striped" style="font-size: 14px; width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> Country </th> <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> Life Expectancy (years) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Argentina </td> <td style="text-align:right;"> 75.3 </td> </tr> <tr> <td style="text-align:left;"> Bolivia </td> <td style="text-align:right;"> 65.6 </td> </tr> <tr> <td style="text-align:left;"> Brazil </td> <td style="text-align:right;"> 72.4 </td> </tr> <tr> <td style="text-align:left;"> Canada </td> <td style="text-align:right;"> 80.7 </td> </tr> <tr> <td style="text-align:left;"> Chile </td> <td style="text-align:right;"> 78.6 </td> </tr> <tr> <td style="text-align:left;"> Colombia </td> <td style="text-align:right;"> 72.9 </td> </tr> <tr> <td style="text-align:left;"> Costa Rica </td> <td style="text-align:right;"> 78.8 </td> </tr> <tr> <td style="text-align:left;"> Cuba </td> <td style="text-align:right;"> 78.3 </td> </tr> <tr> <td style="text-align:left;"> Dominican Republic </td> <td style="text-align:right;"> 72.2 </td> </tr> <tr> <td style="text-align:left;"> Ecuador </td> <td style="text-align:right;"> 75.0 </td> </tr> <tr> <td style="text-align:left;"> El Salvador </td> <td style="text-align:right;"> 71.9 </td> </tr> <tr> <td style="text-align:left;"> Guatemala </td> <td style="text-align:right;"> 70.3 </td> </tr> <tr> <td style="text-align:left;"> Haiti </td> <td style="text-align:right;"> 60.9 </td> </tr> <tr> <td style="text-align:left;"> Honduras </td> <td style="text-align:right;"> 70.2 </td> </tr> <tr> <td style="text-align:left;"> Jamaica </td> <td style="text-align:right;"> 72.6 </td> </tr> <tr> <td style="text-align:left;"> Mexico </td> <td style="text-align:right;"> 76.2 </td> </tr> <tr> <td style="text-align:left;"> Nicaragua </td> <td style="text-align:right;"> 72.9 </td> </tr> <tr> <td style="text-align:left;"> Panama </td> <td style="text-align:right;"> 75.5 </td> </tr> <tr> <td style="text-align:left;"> Paraguay </td> <td style="text-align:right;"> 71.8 </td> </tr> <tr> <td style="text-align:left;"> Peru </td> <td style="text-align:right;"> 71.4 </td> </tr> <tr> <td style="text-align:left;"> Puerto Rico </td> <td style="text-align:right;"> 78.7 </td> </tr> <tr> <td style="text-align:left;"> Trinidad and Tobago </td> <td style="text-align:right;"> 69.8 </td> </tr> <tr> <td style="text-align:left;"> United States </td> <td style="text-align:right;"> 78.2 </td> </tr> <tr> <td style="text-align:left;"> Uruguay </td> <td style="text-align:right;"> 76.4 </td> </tr> <tr> <td style="text-align:left;"> Venezuela </td> <td style="text-align:right;"> 73.7 </td> </tr> </tbody> </table></div> ] --- A _dot plot_: .hide-code[ ```r thm <- theme_minimal() + theme(text = element_text(size = 16)) ggplot(le_am_2007, aes(y = country, x = lifeExp)) + geom_point(fill = "lightblue") + labs(x = "Life Expectancy (years)", y = NULL) + thm + ggtitle("Dot Plot") ``` <img src="intro_files/figure-html/unnamed-chunk-4-1.png" style="display: block; margin: auto;" /> ] --- A _bar chart_: .hide-code[ ```r ggplot(le_am_2007, aes(x = lifeExp, y = country)) + geom_col(fill = "lightblue") + labs(x = "Life Expectancy (years)", y = NULL) + thm + ggtitle("Bar Chart") ``` <img src="intro_files/figure-html/unnamed-chunk-5-1.png" style="display: block; margin: auto;" /> ] --- Another (bad!) _bar chart_: .hide-code[ ```r baseline <- 60 ticks <- c(0, 10, 20, 30) ggplot(le_am_2007, aes(x = lifeExp - baseline, y = country)) + geom_col(fill = "lightblue") + labs(x = "Life Expectancy (years)", y = NULL) + scale_x_continuous(breaks = ticks, labels = ticks + baseline) + thm + ggtitle("Another Bar Chart") ``` <img src="intro_files/figure-html/unnamed-chunk-6-1.png" style="display: block; margin: auto;" /> ] --- We will look at: -- * How to create these views using code that makes them easily reproducible. -- * How to assess their advantages and disadvantages as visual representations of the data -- A data set with more variables for more countries and years is available in the `gapminder` R package. -- Data preparation steps: -- * _Filter_ the larger data set down to the countries and year we want. -- * _Select_ the country name and life expectancy variables. -- We will look at how to carry out these steps with reproducible code. --- layout: true ## Yearly Snowfall in Iowa City --- name: ic-snowfall-example How did the winter of 2018/9 compare to other years? <img src="intro_files/figure-html/snowfall-1.png" style="display: block; margin: auto;" /> --- The data are available from a [NOAA web serice API](https://www.ncdc.noaa.gov/cdo-web/webservices/v2) as a [_CSV_](https://en.wikipedia.org/wiki/Comma-separated_values) file. ``` ## # A tibble: 6 × 34 ## year month element VALUE1 VALUE2 VALUE3 VALUE4 VALUE5 VALUE6 VALUE7 VALUE8 ## <int> <int> <chr> <int> <int> <int> <int> <int> <int> <int> <int> ## 1 1893 1 TMAX -17 -28 -150 -44 -17 -106 -56 -67 ## 2 1893 1 TMIN -67 -161 -233 -156 -156 -206 -111 -211 ## 3 1893 1 PRCP 0 0 0 64 0 38 0 0 ## 4 1893 1 SNOW 0 0 0 64 0 38 0 0 ## 5 1893 2 TMAX 11 -56 -106 -122 33 28 -161 -94 ## 6 1893 2 TMIN -233 -206 -217 -267 -122 -211 -256 -278 ## # ℹ 23 more variables: VALUE9 <int>, VALUE10 <int>, VALUE11 <int>, ## # VALUE12 <int>, VALUE13 <int>, VALUE14 <int>, VALUE15 <int>, VALUE16 <int>, ## # VALUE17 <int>, VALUE18 <int>, VALUE19 <int>, VALUE20 <int>, VALUE21 <int>, ## # VALUE22 <int>, VALUE23 <int>, VALUE24 <int>, VALUE25 <int>, VALUE26 <int>, ## # VALUE27 <int>, VALUE28 <int>, VALUE29 <int>, VALUE30 <int>, VALUE31 <int> ``` --- Data preparation steps: -- * Read in the CSV file. -- * _Reshape_ the data to have columns `date`, `TMAX`, `TMIN`, `SNOW` and `PRCP`. -- * _Filter_ out bogus dates created by the original format. -- * _Convert_ units to more standard (American) ones (e.g. milimeters to inches). * ... -- Code is available [here](#ic-snowfall-example-code). --- layout: true ## Internet Adoption Across the World --- name: internet-example An example from [Wilke (2019)](https://clauswilke.com/dataviz/) with [World Bank data](https://data.worldbank.org/indicator/IT.NET.USER.ZS). <img src="intro_files/figure-html/internet-heatmap-1.png" style="display: block; margin: auto;" /> --- The data are available in several formats (CSV, XML, Excel). ``` ## # A tibble: 6 × 65 ## Country.Name Country.Code Indicator.Name Indicator.Code X1960 X1961 X1962 ## <chr> <chr> <chr> <chr> <int> <lgl> <lgl> ## 1 Aruba ABW Individuals using … IT.NET.USER.ZS NA NA NA ## 2 Afghanistan AFG Individuals using … IT.NET.USER.ZS NA NA NA ## 3 Angola AGO Individuals using … IT.NET.USER.ZS NA NA NA ## 4 Albania ALB Individuals using … IT.NET.USER.ZS NA NA NA ## 5 Andorra AND Individuals using … IT.NET.USER.ZS NA NA NA ## 6 Arab World ARB Individuals using … IT.NET.USER.ZS NA NA NA ## # ℹ 58 more variables: X1963 <lgl>, X1964 <lgl>, X1965 <int>, X1966 <lgl>, ## # X1967 <lgl>, X1968 <lgl>, X1969 <lgl>, X1970 <int>, X1971 <lgl>, ## # X1972 <lgl>, X1973 <lgl>, X1974 <lgl>, X1975 <int>, X1976 <int>, ## # X1977 <int>, X1978 <int>, X1979 <int>, X1980 <int>, X1981 <int>, ## # X1982 <int>, X1983 <int>, X1984 <int>, X1985 <int>, X1986 <int>, ## # X1987 <int>, X1988 <int>, X1989 <int>, X1990 <dbl>, X1991 <dbl>, ## # X1992 <dbl>, X1993 <dbl>, X1994 <dbl>, X1995 <dbl>, X1996 <dbl>, … ``` --- Data preparation: -- * Read in the data. -- * _Filter_ down to the countries we want. -- * _Reshape_ to have columns `country`, `year`, and `users`. * ... -- Code is available [here](#internet-example-code). --- layout:true ## Iowa Wind Turbines --- Data is available from the [U.S. Wind Turbine Database](https://eerscmap.usgs.gov/uswtdb/). <!-- For Wilke's example use data(wind_turbines, package = "dviz.supp"). This uses more recent data from USGS. --> .hide-code[ ```r library(sf) data(US_counties_geoms, package = "dviz.supp") wtfile <- "uswtdb_v6_1_20231128.csv.gz" if (! file.exists(wtfile)) download.file(paste0("https://stat.uiowa.edu/~luke/data/", wtfile), wtfile) wind_turbines <- read.csv(wtfile) sf_wt <- st_as_sf(wind_turbines, coords = c("xlong", "ylat"), crs = 4326) sf_wt_IA <- filter(sf_wt, t_state == "IA") sf_wt_IA <- mutate(sf_wt_IA, p_year = ifelse(p_year > 0, p_year, NA), year = cut(p_year, breaks = c(0, 2005, 2010, 2015, 2020, Inf), labels = c("before 2005", "2005-2009", "2010-2014", "2015-2020", "2021 and later"), right = FALSE)) ggplot(filter(US_counties_geoms$lower48, STATEFP == 19)) + geom_sf() + geom_sf(data = sf_wt_IA, aes(fill = year), shape = 21, color = "black", stroke = 0.25) + scale_fill_viridis_d(direction = -1, na.value = "red") + ggthemes::theme_map() + ggtitle("A Map") + theme(legend.background = element_rect(fill = "transparent"), plot.title = element_text(size = 16)) ``` <img src="intro_files/figure-html/unnamed-chunk-9-1.png" style="display: block; margin: auto;" /> ] --- There are two data sets: -- * _Shape_ information for drawing the map. -- * Data on individual wind turbines. -- Data preparation: -- * Read in the data. -- * Match up the _projection_ used for the map and location data. * ... --- layout: true ## Iowa Population in 2010 --- .hide-code[ ```r data(US_census, package = "dviz.supp") uscounties <- mutate(US_counties_geoms$lower48, FIPS = as.numeric(paste0(STATEFP, COUNTYFP))) uscounties <- left_join(uscounties, select(US_census, FIPS, pop2010), "FIPS") ## old-style crs object detected; please recreate object with a recent sf::st_crs() ggplot(filter(uscounties, STATEFP == 19)) + geom_sf(aes(fill = pop2010)) + scale_fill_viridis_c(direction = -1, trans = "log10", labels = scales::comma) + ggtitle("A Choropleth Map") + ggthemes::theme_map() + theme(legend.background = element_rect(fill = "transparent"), plot.title = element_text(size = 16)) ``` <img src="intro_files/figure-html/unnamed-chunk-11-1.png" style="display: block; margin: auto;" /> ] --- Again there are two data sets: -- * Shape data for drawing the map. -- * County population data from the 2010 census. -- Data preparation: -- * ... * _Merge_ or _join_ the population data with the shape data. * ... --- layout: false class: center, middle # Reproducibility --- ## Reproducible Reports and Analyses Preparing a report on a data analysis project usually involves -- * reading the data -- * _wrangling_ the data into usable form -- * visualizing, summarizing, and modeling -- * writing a report that includes your results -- To make your work reproducible for someone else, or for you when the data changes, it is best to use code for the entire workflow. -- [_R Markdown_](https://rmarkdown.rstudio.com/) is one technology that supports this. --- ## Tools for Reproducibility R Markdown files contain report text along with code to produce numerical and graphical results. -- Tools are available to -- * convert an R Markdown file into a PDF or HTML report; -- * extract the code used to produce the computational and graphical results. -- These slides were generated from the R Markdown file [intro.Rmd](intro.Rmd). -- You will be creating R Markdown files like this for your homework and project. -- Some R Markdown tutorials: -- * [R Markdown: The Definitive Guide](https://bookdown.org/yihui/rmarkdown/) by Yihui Xie is a book-length presentation. -- * The [R Markdown Home Page](https://rmarkdown.rstudio.com) has a link to a [tutorial](https://rmarkdown.rstudio.com/lesson-1.html). --- class: center, middle # Code --- layout: true ## Code for the [Iowa City Snowfall Example](#ic-snowfall-example) --- name: ic-snowfall-example-code Read the data: ```r library(tidyverse) library(lubridate) if (! file.exists(here("ic_noaa.csv.gz"))) download.file("http://www.stat.uiowa.edu/~luke/data/ic_noaa.csv.gz", here("ic_noaa.csv.gz")) ic_data_raw <- as_tibble(read.csv(here("ic_noaa.csv.gz"), head = TRUE)) ``` -- Reshape from (very) wide to (too) long: ```r ic_data <- select(ic_data_raw, year, month, element, starts_with("VALUE")) ic_data <- pivot_longer(ic_data, names_to = "day", values_to = "value", c(VALUE1 : VALUE31)) ``` -- Extract the day as a number: ```r ic_data <- mutate(ic_data, day = as.integer(sub("VALUE", "", day))) ``` --- Reshape from too long to tidy with one row per day, keeping only the primary variables: ```r corevars <- c("TMAX", "TMIN", "PRCP", "SNOW", "SNWD") ic_data <- filter(ic_data, element %in% corevars) ic_data <- pivot_wider(ic_data, names_from = "element", values_from = "value") ``` -- Add a date variable for plotting and to help get rid of bogus days: ```r ic_data <- mutate(ic_data, date = lubridate::make_date(year, month, day)) ic_data <- filter(ic_data, ! is.na(date)) ``` -- Make units more standard (American): ```r mm2in <- function(x) x / 25.4 C2F <- function(x) 32 + 1.8 * x ic_data <- transmute(ic_data, year, month, day, date, PRCP = mm2in(PRCP / 10), SNOW = mm2in(SNOW), SNWD = mm2in(SNWD), TMIN = C2F(TMIN / 10), TMAX = C2F(TMAX / 10)) ``` --- Add a Month factor with abbreviated levels: ```r ic_data <- mutate(ic_data, Month = lubridate::month(month, label = TRUE, abbr = TRUE)) ``` -- Associate January through June with the winter starting in the previous year: ```r ic_data <- mutate(ic_data, wyear = ifelse(month <= 6, year - 1, year)) ``` -- Compute the winter totals and the total for the 2018/9 winter: ```r ic_snow <- group_by(ic_data, wyear) |> summarize(snow = sum(SNOW, na.rm = TRUE)) ic_snow_2018 <- filter(ic_snow, wyear == 2018)$snow ``` --- Create the histogram and show the 2018/9 total: ```r ggplot(ic_snow) + geom_histogram(aes(x = snow), bins = 15, fill = "grey", color = "black") + geom_vline(xintercept = ic_snow_2018, color = "red", size = 2) + scale_x_continuous(name = "Total Annual Snowfall (inches)", sec.axis = dup_axis(name = NULL, breaks = ic_snow_2018, labels = "2018/9")) + scale_y_continuous(expand = expansion(0, 0)) + ggtitle("A Histogram") + theme_minimal() + theme(text = element_text(size = 16)) ``` <!-- ## nolint start --> <!-- ## nolint end --> --- layout: true ## Code for the [Internet Example](#internet-example) --- name: internet-example-code From [code](https://github.com/clauswilke/dataviz/blob/master/visualizing_amounts.Rmd) for the [_Visualizing amounts_ chapter](https://clauswilke.com/dataviz/visualizing-amounts.html) in Claus Wilke's [Fundamentals of Data Visualization](https://clauswilke.com/dataviz/index.html). Reading in the data: ```r base_url <- "http://api.worldbank.org/v2/en/indicator/" if (file.exists("internet.xls")) { ## if we have to go with Excel ## xls_url <- paste0(base_url, "IT.NET.USER.ZS?downloadformat=excel") ## download.file(xls_url, "internet.xls") internet_raw <- readxl::read_xls("internet.xls", skip = 2, .name_repair = "universal") names(internet_raw) <- sub("\\.\\.\\.", "X", names(internet_raw)) } else { csvfile <- here("internet.csv") if (! file.exists(csvfile)) { csv_url <- paste0(base_url, "IT.NET.USER.ZS?downloadformat=csv") download.file(csv_url, "internet.zip") unzip("internet.zip") file.rename("API_IT.NET.USER.ZS_DS2_en_csv_v2_2255007.csv", csvfile) } internet_raw <- read.csv(csvfile, skip = 4) } ``` --- Reshape to longer format: ```r internet <- select(internet_raw, country = Country.Name, matches("X.+")) internet <- pivot_longer(internet, -country, names_to = "year", values_to = "users") internet <- mutate(internet, year = as.integer(sub("X", "", year))) ``` -- Select some countries to include in the plot: ```r country_list <- c("United States", "China", "India", "Japan", "Algeria", "Brazil", "Germany", "France", "United Kingdom", "Italy", "New Zealand", "Canada", "Mexico", "Chile", "Argentina", "Norway", "South Africa", "Kenya", "Israel", "Iceland") internet_short <- filter(internet, country %in% country_list) ## internet_short <- mutate(internet_short, ## users = ifelse(is.na(users), 0, users)) ``` --- Get ordering by 2017 levels: ```r intr17 <- filter(internet_short, year == 2017) levs <- arrange(intr17, users)$country ``` -- The basic plot: ```r p_inet <- ggplot(filter(internet_short, year > 1993), aes(x = year, y = factor(country, levs), fill = users)) + geom_tile(color = "white", size = 0.25) ``` --- Adjust color palette and guide: ```r p_inet <- p_inet + scale_fill_viridis_c( option = "A", begin = 0.05, end = 0.98, limits = c(0, 100), name = "internet users / 100 people", guide = guide_colorbar( direction = "horizontal", label.position = "bottom", title.position = "top", ticks = FALSE, barwidth = grid::unit(3.5, "in"), barheight = grid::unit(0.2, "in"), order = 1)) ``` --- Adjust `x` and `y` scales: ```r p_inet <- p_inet + scale_x_continuous(expand = c(0, 0), name = NULL) + scale_y_discrete(name = NULL, position = "right") ``` -- Add layer for `NA` values: ```r p_inet <- p_inet + ggnewscale::new_scale_fill() + geom_tile(data = filter(internet_short, year > 1993, is.na(users)), aes(fill = "NA"), color = "white") + scale_fill_manual(values = "grey50") + guides(fill = guide_legend(title = "", label.position = "bottom", title.position = "top", keyheight = grid::unit(0.2, "in"), keywidth = grid::unit(0.2, "in"), order = 2)) ``` --- Final plot with title and theme adjustments: ```r p_inet + ggtitle("A Heat Map", "Countries ordered by percent internet users in 2017.") + theme(text = element_text(size = 16)) + theme(axis.line = element_blank(), axis.ticks = element_blank(), axis.ticks.length = grid::unit(1, "pt"), legend.position = "top", legend.justification = "left", legend.title.align = 0.5, legend.title = element_text(size = 12 * 12 / 14) ) ```
//adapted from Emi Tanaka's gist at //https://gist.github.com/emitanaka/eaa258bb8471c041797ff377704c8505