NAME: _____

HOMEWORK 10 ELEMENTARY STATISTICS & INFERENCE STAT:1020; BOGNAR

Print this pdf file, show your work in the provided space, use scanning app to scan pages (in order) into a single pdf file, submit in Gradescope. Be sure to get entire page in each shot — keep pages flat when scanning. You can use an iPad/tablet too.

- 1. The gain of a certain type of JFET transistor follows a normal distribution with mean μ and standard deviation σ . An electrical engineer randomly selected 7 transistors, and computed $\bar{x} = 116.2$ and s = 7.8.
 - (a) Find a 95% confidence interval for μ .

(b) Interpret the CI in (1a).

- (c) Based upon your answer in (1a), does μ significantly differ from 120? Why?
- (d) Could we find the CI in (1a) if the gains did not follow a normal distribution? Why?
- 2. The amount of time per day (in hours) office workers spend working on a computer can be modeled by a normal distribution with mean μ and standard deviation σ . A manager wants to infer about the population mean μ , so he randomly selects 5 employees and observes their work habits. The raw data is:

6.5, 7.1, 5.9, 6.2, 6.3

(a) Compute the sample mean \bar{x} and the sample standard deviation s.

(b) Find a 99% confidence interval for μ .

- (c) Interpret the CI in (2b).
- (d) Based upon your answer in (2b), does μ significantly differ from 8 hours? Why?
- 3. The longevity of truck tires (in months) has a normal distribution with mean μ months and standard deviation $\sigma = 8.0$ months. Suppose n = 16 tires are randomly selected and the sample mean longevity $\bar{x} = 42.5$ months.
 - (a) Test $H_0: \mu = 40$ versus $H_a: \mu \neq 40$ at the $\alpha = 0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.

- (b) Based upon your answer in 3a, does the mean longevity μ significantly differ from 40? Why?
- (c) Find a 95% CI for the mean longevity μ .
- (d) Based upon your answer in 3c, does the population mean longevity μ significantly differ from 40? Why?
- (e) Based upon your answer in 3c, will the p-value for the test in 3a be less than α or greater than α ? Why?
- (f) Find the p-value for the test in 3a.
- (g) Based on your answer in (3f), does the population mean longevity μ significantly differ from 40? Why?

4. The diastolic blood pressure, X, of smokers follows a normal distribution with mean μ and standard deviation $\sigma = 15$, i.e. $X \sim N(\mu, \sigma = 15)$. The diastolic blood pressure of 3 randomly selected smokers was:

125 140 125

(a) Find a 90% CI for the population mean diastolic blood pressure μ .

(b) Test $H_0: \mu = 140$ vs. $H_a: \mu \neq 140$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.

- (c) Find the p-value for the test in 4b.
- (d) Based upon your answer in 4c, does the population mean diastolic blood pressure μ significantly differ from 140? Why?
- (e) Based upon your answer in 4a, does the population mean diastolic blood pressure μ significantly differ from 140? Why?

- 5. In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma = 7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x} = 10$.
 - (a) Test $H_0: \mu = 12$ versus $H_a: \mu \neq 12$ at the $\alpha = 0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.

- (b) Based upon your answer in 5a, will the p-value for the test be less than α or greater than α ? Why?
- (c) Find the p-value for the test in 5a.
- (d) Based upon your answer in 5c, does the mean number of crossings μ significantly differ from 12? Why?
- (e) Could we perform the above analysis if the sample size n < 30? Explain.