
11.1(a): 0.983
11.1(b): $\hat{y}=34.5+0.95 x$
$11.1(d): 0.950=\$ 950$
11.1 $(e): 34.5=\$ 34500$
11.1 $(f): 45.9=\$ 45900$
$11.1(g): 40.2=\$ 40200$
11.1(h): $(38.957,41.443)$
$11.1(i): t^{*}=10.82, t_{\alpha / 2, n-p}=t_{0.025,4}=2.776$, reject H_{0}, there is a significant linear relationship between years of experience and salary.
11.1 $(j): 2 P\left(t_{(n-p)}>\left|t^{*}\right|\right)=2 P\left(t_{(4)}>10.82\right)<$ 0.001 , significant linear relationship since the p-value is less than α.
11.1(k): 0.00042
11.1(l): $(0.706,1.194)$, significant linear relationship since the CI excludes 0 .
11.1(m): $(31.94,37.06)$
11.1 (n) : Yes, since the CI for β_{0} excludes 40.
11.1(o): 96.7% of the variability in salaries is explained by the linear relationship with years of experience.
11.2(a): Every extra percent of ethanol reduces mileage by approximately 0.25 , on average.
11.2(b): The estimated mean mileage when no ethanol is used is 32.96 .
11.2(c): $t^{*}=-5.15, P\left(t_{(5)}<-5.15\right) \epsilon$ (0.001, 0.0025), ethanol significantly decreases the mean mileage.
11.2(d): 31.214
11.2(e): $(30.68,31.75)$, we are 95% confident that the mean mileage when using 7% ethanol is between 30.68 and 31.75 .
11.2(f): $(-0.375,-0.125)$, we are 95% confident that the mean decrease in mileage for each extra percent of ethanol is between -0.375 and -0.125 .
11.3(a): Test $H_{0}: \beta_{1}=0$ versus $H_{a}: \beta_{1} \neq 0$, $t^{*}=5.59, p-$ value $\in(0.002,0.005)$.
11.3(b): $(15.95,17.37)$
11.3(c): Yes, since the CI for $\mu_{y \mid x=200}$ lies entirely below 20 .
$11.4(a): \bar{y}_{F}=34.0, \bar{y}_{M}=30.6$
11.4(b): 0.983
11.4(c): $\operatorname{Cov}\left(x_{M}, y_{M}\right)=4.75$
$11.4(d): \hat{y}_{F}=24.5+0.95 x, \hat{y}_{M}=25.85+1.1875 x$
11.4(f): Males make $1.3=\$ 1300$ more than females for starting pay, on average.
11.4 (g) : Males get $\$ 1187.5$ extra per year on average, females get $\$ 950$ extra per year on average.
11.4 $(h): 32.975-30.2=2.775=\$ 2775$
11.4(i): The overall mean years of experience is $\bar{x}=80 / 11=7.27$. When $x=7.27$ we have $\hat{y}_{F}=31.407$ and $\hat{y}_{M}=34.483$.
11.4(j): $34.483-31.407=3.076=\$ 3076$. After adjusting for years of experience, males make $\$ 3076$ more than females, on average.
11.4(k): No, since the unadjusted salaries do not account for years of experience. The adjusted mean salaries account for years of experience and therefore we can make a meaningful comparison between the male and female adjusted mean salaries.

