HOMEWORK 12 PROB. AND STAT. FOR ENG. (STAT:2020; BOGNAR)

NAME:

Print this pdf file, show your work in the provided space, use scanning app to scan pages (in order) into a single pdf file, submit in Gradescope. Be sure to get entire page in each shot — lay each page flat when scanning. You can use an iPad/tablet too.

1. Textbook 9.4 ((a) only, s = 6.9)

(a)

2. Textbook 9.6 ($\sigma = 40$)

3. Textbook 9.10 (s = 7.8)

4. Textbook 9.12 (s = 15)

- 5. The longevity of truck tires (in thousands of miles) follows a normal distribution with mean μ and standard deviation $\sigma = 20$. Suppose n = 64 tires are randomly selected and the sample mean $\bar{x} = 76.5$.
 - (a) Test $H_0: \mu = 75$ versus $H_a: \mu \neq 75$ at the $\alpha = 0.05$ significance level using a 3-step test.

- (b) Based upon your answer in part (a), does μ significantly differ from 75? Why?
- (c) Find the p-value for the test in part (a).
- (d) Based upon your answer in part (c), does μ significantly differ from 75? Why?
- (e) Find a 95% confidence interval for μ .

- (f) Based upon your answer in part (e), does μ significantly differ from 75? Why?
- (g) If the longevities were not normally distributed, could we still do inference for μ ? Why?

- 6. A coffee shop knows that the temperature of their coffees has a distribution that is skewed to the left with mean μ degrees and standard deviation $\sigma = 8$ degrees. A random sample of 36 coffees yielded a sample mean temperature $\bar{x} = 187$ degrees.
 - (a) Test $H_0: \mu = 190$ versus $H_a: \mu \neq 190$ at the $\alpha = 0.01$ significance level using a 3-step test.

- (b) Based upon your answer in part (a), does μ significantly differ from 190? Why?
- (c) Approximate the p-value for the test in part (a).
- (d) Based upon your answer in part (c), does μ significantly differ from 190? Why?
- (e) Find a 99% confidence interval for μ .

- (f) Based upon your answer in part (e), does μ significantly differ from 190? Why?
- (g) Suppose the sample size was 10, not 36. Could we still do inference for μ ? Why?

7. Suppose a researcher tests $H_0: \mu = 125$ versus $H_a: \mu \neq 125$ at the $\alpha = 0.05$ significance level. If $\sigma = 12$ and a 96.6% confidence interval for μ is (118.26,126.74), find the *p*-value of the test.

- 8. Suppose a random sample of size 9 was obtained from a normal population with mean μ and standard deviation $\sigma = 6.3$. It was determined that the *p*-value for the test $H_0: \mu = 80$ versus $H_a: \mu \neq 80$ was 0.8336.
 - (a) If $\bar{x} > \mu$, find a 95% confidence interval for μ .

(b) Approximately how large of a sample size n would be needed for the margin of error (at 95% confidence) to equal 2.0?