Print this pdf file, show your work in the provided space, use scanning app to scan pages ($\underline{in\ order}$) into a single pdf file, submit in Gradescope. Be sure to get $\underline{entire\ page}$ in each shot — lay each page \underline{flat} when scanning. You can use an iPad/tablet too. The Gradescope app works well for submitting too. Make sure the \underline{page} upload $\underline{in\ order}$.

1. Textbook 2.6.4

2. Textbook 2.6.7

(a)

(b)

(c)

3.	Textbook 3.2.2
	(a)
	(b)
	(c)
	(d)
4. 7	Textbook 3.3.2
	(a)
	(b)
	(c)
	(d)
5. S	Suppose a 6-sided die (with sides labeled 1, 2, 3, 4, 5, 6) is rolled 2 times.
	(a) Let A denote the event that a 1 is obtained on the first roll, and let B denote the event that an even is obtained on the second roll. Find the probability that events A and B both occur. In other words, find $P(A \cap B)$.
	(b) Let A denote the event that a 1 is obtained on the first roll, and let B denote the event that an even is obtained on the second roll. Find the probability that A occurs, B occurs, or both A and B occur. In other words, find $P(A \cup B)$.

6.	Suppose you randomly select 2 chips with replacement from a bowl containing 3 red (R) and 5 white (W) chips Let R_1 denote the event that a red chip is obtained on the first draw, let R_2 denote the event that a red chip is obtained on the second draw. Find $P(R_1 \cap R_2)$.
7.	Based on long-run relative frequencies, approximately 51% of all births in the U.S. are boys (i.e. $P(B) = 0.51$ $P(G) = 0.49$). Assume independence.
	(a) If a woman has 3 children, find the probability that she has all boys.
	(b) If a woman has 3 children, find the probability that she does not have all boys. <i>Use complement rule</i> .
	(c) If a woman has 3 children, find the probability that the first child is a boy, while the last 2 children are girls.
	(d) If a woman has 3 children, find the probability that she has exactly 1 boy. Hint: $P[(B_1 \cap G_2 \cap G_3) \cup () \cup ()]$

(e)	If a woman has 3 children, find the probability that she has 1 or more boys. Use the complement rule.
8. Supp	pose that 4% of desktop computers in a large hospital run the Linux operating system (L) .
(a)	Suppose 2 computers are randomly selected (assume independence). Find the probability that neither computer is running Linux, i.e. find $P(L_1^c \cap L_2^c)$.
(b)	Suppose 2 computers are randomly selected (assume independence). Find the probability that the first com-
(~)	puter runs Linux (L_1) , the second computer runs linux (L_2) , or both run Linux. In other words, find $P(L_1 \cup L_2)$.
(c)	Suppose 2 computers are randomly selected (assume independence). Find the probability that exactly one of
	the computers runs Linux. Hint: $P[(L_1 \cap L_2^c) \cup ()]$.
(d)	Suppose computers are repeatedly selected (assume independence). Find the probability that the 4th selected computer is the first one running Linux. In other words, find $P(L_1^c \cap L_2^c \cap L_3^c \cap L_4)$.
	Suppose 5 computers are randomly selected (assume independence). Find the probability that 1 or more run
	linux. Use the complement rule.